Displaying all 4 publications

Abstract:
Sort:
  1. Zainalabidin S, Budin SB, Ramalingam A, Lim YC
    Korean J. Physiol. Pharmacol., 2014 Oct;18(5):411-8.
    PMID: 25352761 DOI: 10.4196/kjpp.2014.18.5.411
    Vascular remodelling is an adaptive mechanism, which counteracts pressure changes in blood circulation. Nicotine content in cigarette increases the risk of hypertension. The exact relationship between nicotine and vascular remodelling still remain unknown. Current study was aimed to determine the effect of clinically relevant dosage of nicotine (equivalent to light smoker) on aortic reactivity, oxidative stress markers and histomorphological changes. Twelve age-matched male Sprague-Dawley rats were randomly divided into two groups, i.e.: normal saline as control or 0.6 mg/kg nicotine for 28 days (i.p., n=6 per group). On day-29, the rats were sacrificed and the thoracic aorta was dissected immediately for further studies. Mean arterial pressure (MAP) and pulse pressure (PP) of nicotine-treated vs. control were significantly increased (p<0.05). Nicotine-treated group showed significant (p<0.05) increase tunica media thickness, and decrease in lumen diameter, suggesting vascular remodelling which lead to prior hypertension state. The phenylephrine (PE)-induced contractile response in nicotine group was significantly higher than control group (ED50=1.44×10(5) M vs. 4.9×10(6) M) (p<0.05~0.001). However, nicotine-treated rat showed significantly lower endothelium-dependent relaxation response to acetylcholine (ACh) than in control group (ED50=6.17×10(7) M vs. 2.82×10(7) M) (p<0.05), indicating loss of primary vascular function. Malondialdehyde (MDA), a lipid peroxidation marker was significantly higher in nicotine group. Superoxide dismutase (SOD) enzymatic activity and glutathione (GSH) were all reduced in nicotine group (p<0.05) vs. control, suggesting nicotine induces oxidative imbalance. In short, chronic nicotine administration impaired aortic reactivity, probably via redox imbalance and vascular remodelling mechanism.
  2. Jin Y, Wang H, Li J, Dang M, Zhang W, Lei Y, et al.
    Korean J. Physiol. Pharmacol., 2020 Jul 01;24(4):311-317.
    PMID: 32587125 DOI: 10.4196/kjpp.2020.24.4.311
    In the present experimental study, cecal ligation and puncture significantly increased the myocardial injury assessed in terms of excess release of creative kinase-MB (CK-MB), cardiac troponin I (cTnI), interleukin (IL)-6 and decrease of IL-10 in the blood following 12 h of laparotomy procedure as compared to normal control. Also, a significant increase in protein expression levels of high-mobility group box 1 (HMGB1) and decreased phosphorylation of glycogen synthase kinase-3β (GSK-3β) was observed in the myocardial tissue as compared to normal control. A single independent administration of telmisartan (2 and 4 mg/kg) and AR-A014418 (1 and 2 mg/kg) substantially reduced sepsis-induced myocardial injury in terms of decrease levels of CK-MB, cTnI and IL-6, HMGB1, GSK-3β and increase in IL-10 and p-GSK-3β in the blood in sepsis- subjected rats. The effects of telmisartan at dose 4 mg/kg and AR-A014418 at a dose of 2 mg/kg were significantly higher than the telmisartan at a dose of 2 mg/kg and AR-A014418 1 mg/kg respectively. Further, no significant effects on different parameters were observed in the sham control group in comparison to normal. Therefore it is plausible to suggest that sepsis may increase the levels of angiotensin II to trigger GSK-3β-dependent signaling to activate the HMGB1/receptors for advanced glycation end products, which may promote inflammation and myocardial injury in sepsis-subjected rats.
  3. Varatharajan R, Lim LX, Tan K, Tay CS, Teoh YL, Akhtar SS, et al.
    Korean J. Physiol. Pharmacol., 2016 Jul;20(4):333-40.
    PMID: 27382349 DOI: 10.4196/kjpp.2016.20.4.333
    Edaravone, a synthetic-free radical scavenger, has been reported to reduce ischemia-reperfusion-induced renal injury by improving tubular cell function, and lowering serum creatinine and renal vascular resistance. The present study investigated the effect of edaravone in diabetes mellitus-induced nephropathy in rats. A single administration of streptozotocin (STZ, 55 mg/kg, i.p.) was employed to induce diabetes mellitus in rats. The STZ-administered diabetic rats were allowed for 10 weeks to develop nephropathy. Mean body weight, lipid alteration, renal functional and histopathology were analysed. Diabetic rats developed nephropathy as evidenced by a significant increase in serum creatinine and urea, and marked renal histopathological abnormalities like glomerulosclerosis and tubular cell degeneration. The kidney weight to body weight ratio was increased. Moreover, diabetic rats showed lipid alteration as evidenced by a signifi cant increase in serum triglycerides and decrease in serum high-density lipoproteins. Edaravone (10 mg/kg, i.p., last 4-weeks) treatment markedly prevented the development of nephropathy in diabetic rats by reducing serum creatinine and urea and preventing renal structural abnormalities. In addition, its treatment, without significantly altering the elevated glucose level in diabetic rats, prevented diabetes mellitus-induced lipid alteration by reducing serum triglycerides and increasing serum high-density lipoproteins. Interestingly, the renoprotective effect of edaravone was comparable to that of lisinopril (5 mg/kg, p.o, 4 weeks, standard drug). Edaravone prevented renal structural and functional abnormalities and lipid alteration associated with experimental diabetes mellitus. Edaravone has a potential to prevent nephropathy without showing an anti-diabetic action, implicating its direct renoprotection in diabetic rats.
  4. Yap WB, Ahmad FM, Lim YC, Zainalabidin S
    Korean J. Physiol. Pharmacol., 2016 Nov;20(6):621-628.
    PMID: 27847439
    Hypertension can be caused by various factors while the predominant causes include increase in body fluid volume and resistance in the circulatory system that elevate the blood pressure. Consumption of probiotics has been proven to attenuate hypertension; however, the effect is much strain-dependent. In this study, a newly isolated Lactobacillus casei (Lb. casei) strain C1 was investigated for its antihypertensive properties in spontaneously hypertensive rats (SHR). Lactic acid bacteria (LAB) suspension of 11 log colony-forming unit (CFU) was given to SHR (SHR+LAB, n=8), and phosphate buffer saline (PBS) was given as a control in SHR (SHR, n=8) and in Wistar rats as sham (WIS, n=8). The treatment was given via oral gavage for 8 weeks. The results showed that the weekly systolic blood pressure (SBP), mean arterial pressure (MAP), diastolic blood pressure (DBP) and aortic reactivity function were remarkably improved after 8 weeks of bacterial administration in SHR+LAB. These effects were mostly attributed by restoration of wall tension and tensile stress following the bacterial treatment. Although not statistically significant, the level of malondialdehye (MDA) in SHR+LAB serum was found declining. Increased levels of glutathione (GSH) and nitric oxide (NO) in SHR+LAB serum suggested that the bacterium exerted vascular protection through antioxidative functions and relatively high NO level that induced vasodilation. Collectively, Lb. casei strain C1 is a promising alternative for hypertension improvement.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links