Displaying all 11 publications

Abstract:
Sort:
  1. Qaid EYA, Zakaria R, Mohd Yusof NA, Sulaiman SF, Shafin N, Othman Z, et al.
    Turk J Pharm Sci, 2020 Oct;17(5):555-564.
    PMID: 33177938 DOI: 10.4274/tjps.galenos.2019.32704
    Objectives: A growing body of evidence indicates that hypoxia exposure causes learning and memory deficits. An effective natural therapeutic approach has, however, not been explored widely. Our previous studies found that Tualang honey administration protected learning and memory functions in ovariectomized rats. Therefore, the present study investigated its efficacy in ameliorating hypoxia-induced memory deficits in adult male Sprague Dawley rats.

    Materials and Methods: The rats were divided into four groups: i) Normoxia treated with sucrose (n=12), ii) Normoxia treated with Tualang honey (n=12), iii) Hypoxia treated with sucrose (n=12), and iv) Hypoxia treated with Tualang honey (n=12). Tualang honey (0.2 g/kg/BW) and sucrose (1 mL of 7.9%) supplementations were administered orally to the rats daily for 14 days. Then the hypoxia groups were exposed to hypoxia (~11%) for 7 days, while the normoxia groups were kept in normal conditions. Following exposure to hypoxia, the rats' memories were analyzed using a novel object recognition task and T-maze test.

    Results: The data revealed that rats exposed to hypoxia showed significant impairment in short-term memory (STM), spatial memory (p<0.01), and long-term memory (LTM) when compared to the normoxia group. Hypoxia rats treated with Tualang honey showed significant improvement in STM, LTM, and spatial memory (p<0.05) compared with those treated with sucrose (p<0.05). Tualang honey also reduced neuronal damage in the hippocampus of adult male Sprague Dawley rats exposed to hypoxia.

    Conclusion: It is suggested that Tualang honey pretreatment has protective effects against hypoxia-induced memory deficits, possibly through its antioxidant contents.

  2. Abd Aziz CB, Hasim H, Zakaria R, Ahmad AH
    Turk J Pharm Sci, 2020 Dec 23;17(6):620-625.
    PMID: 33389951 DOI: 10.4274/tjps.galenos.2019.21548
    Objectives: This study investigated whether the alterations in memory and hippocampus morphology and levels of malondialdehyde (MDA) and N-methyl-D-aspartate (NMDA) receptor in the hippocampus of adult rats after prenatal stress could be prevented by administration of Tualang honey (TH).

    Materials and Methods: Twenty-four pregnant rats were randomly grouped into a control group (C), a stress group (S), and a stress group treated with TH. Eight male pups from each group were randomly chosen and they were sacrificed at eight or ten weeks of age following the novel object recognition test. Their brains were removed and histological changes and levels of MDA and NMDA receptors in the hippocampus were determined.

    Results: The offspring from TH group showed significantly increased preference index (p<0.05) with higher neuronal number compared to S group. A significantly lower level of MDA and NMDA receptors were shown in TH group (P<0.01; P<0.05 respectively) compared to S group. The parameters investigated were not significantly different between C and TH groups.

    Conclusion: The study has shown that memory alteration, changes in hippocampus histology, MDA and NMDA receptor levels could be prevented by TH administration during prenatal stress. The results suggest the beneficial effects of Tualang honey in prenatally stressed rat offspring.

  3. Chellathurai MS, Ling VWT, Palanirajan VK
    Turk J Pharm Sci, 2021 Feb 25;18(1):96-103.
    PMID: 33634684 DOI: 10.4274/tjps.galenos.2020.21033
    Objectives: Microneedle transdermal patches are a combination of hypodermic needles and transdermal patches used to overcome the individual limitations of both injections and patches. The objective of this study was to design a minimally invasive, biodegradable polymeric recombinant human keratinocyte growth factor (rHuKGF) microneedle array and evaluate the prepared biodegradable microneedles using in vitro techniques.

    Materials and Methods: Biodegradable polymeric microneedle arrays were fabricated out of poly lactic-co-glycolic acid (PLGA) using the micromolding technique under aseptic conditions, and the morphology of the microneedles was characterized using light microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to rule out drug-polymer interactions. Standard procedures were used to analyze the prepared microneedle arrays for in vitro drug release and to perform a microneedle insertion test. Enzyme-linked immunosorbent assay was used to quantify rHuKGF.

    Results: The PLGA polymer was safe for use in the fabrication of rHuKGF microneedles as there was no interaction between the drug and the polymer. The fabricated rHuKGF microneedle arrays had fully formed microneedles with a height of 600 µm and a base of 300 µm. The drug from the microneedle patch was released in vitro within 30 minutes. The strength of the microneedles in the patch was good, as they were able to reach a depth of 381±3.56 µm into parafilm without any structural change or fracture.

    Conclusion: Microneedle transdermal patches were successfully prepared for rHuKGF, and their evaluation suggested excellent quality and uniformity of patch characteristics. This can have potential applications in the therapeutic arena, offering advantages in terms of reduced dosing frequency, improved patient compliance, and bioavailability.

  4. Veerasamy R, Rajak H
    Turk J Pharm Sci, 2021 04 20;18(2):151-156.
    PMID: 33900700 DOI: 10.4274/tjps.galenos.2020.45556
    Objectives: The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for neuraminidase inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anti-influenza activity.

    Materials and Methods: We have developed and validated 2D and 3D QSAR models by using multiple linear regression, partial least square regression, and k-nearest neighbor-molecular field analysis methods.

    Results: 2D QSAR models had q2: 0.950 and pred_r2: 0.877 and 3D QSAR models had q2: 0.899 and pred_r2: 0.957. These results showed that the models werere predictive.

    Conclusion: Parameters such as hydrogen count and hydrophilicity were involved in 2D QSAR models. The 3D QSAR study revealed that steric and hydrophobic descriptors were negatively contributed to neuraminidase inhibitory activity. The results of this study could be used as platform for design of better anti-influenza drugs.

  5. Kuang TK, Kang YB, Segarra I, Kanwal U, Ahsan M, Bukhari NI
    Turk J Pharm Sci, 2021 04 20;18(2):167-175.
    PMID: 33902255 DOI: 10.4274/tjps.galenos.2020.48902
    Objectives: This study was conducted to assess the effect of microwave heating on the preparation of paracetamol cross-linked gelatin matrices by using the design of experiment (DoE) approach and explore the influence of the duration of microwave irradiation, the concentrations of crosslinker, and the amount of sodium bicarbonate (salt) on paracetamol release. These parameters were also compared with those of the matrices prepared via conventional heating.

    Materials and Methods: Twenty gel matrices were prepared with different durations of microwave irradiation, amounts of maize, and concentrations of sodium bicarbonate as suggested by Design Expert (DX®). The percentage drug release, the coefficient of variance (CV) in release, and the mean dissolution time (MDT) were the properties explored in the designed experimentation.

    Results: Target responses were dependent on microwave irradiation time, cross-linker amount, and salt concentration. Classical and microwave heating did not demonstrate statistically significant difference in modifying the percentage of drug released from the matrices. However, the CVs of microwave-assisted formulations were lower than those of the gel matrices prepared via classical heating. Thus, microwave heating produced lesser variations in drug release. The optimized gel matrices demonstrated that the observed percentage of drug release, CV, and MDT were within the prediction interval generated by DX®. The release mechanism of the matrix formulations followed the Peppas-Korsmeyer anomalous transport model.

    Conclusion: The DoE-supported microwave-assisted approach could be applied to optimize the critical factors of drug release with less variation.

  6. Sreedharan Nair R, Rahman H, Kong MX, Tan XY, Chen KY, Shanmugham S
    Turk J Pharm Sci, 2021 06 18;18(3):352-359.
    PMID: 34157826 DOI: 10.4274/tjps.galenos.2020.88725
    Objectives: N,N-Diethyl-3-methylbenzamide (DEET) is a broad-spectrum insect repellent that can easily permeate through the skin and can cause undesirable effects, especially in children and pregnant women. The objective of this research was to formulate and evaluate DEET-encapsulated microparticles containing a hydrogel designed to reduce skin permeation and prolong drug release.

    Materials and Methods: The formulation design was based on the independent formulation variables of the concentration of chitosan and sodium tripolyphosphate using a simple factorial design experiment. DEET-loaded microparticles were developed and incorporated into a hydrogel. The size of the microparticles was analyzed using the Zetasizer Nano® particle size analyzer, and the surface morphology, using field emission scanning electron microscopy. Drug release from the microparticles was determined by the dialysis bag method. A rheological evaluation of the formulated gel was performed using a Thermo Haake Rheometer. The in vitro permeation of the formulation was performed using a synthetic Strat-M® membrane.

    Results: The size of the microparticles ranged from 0.45 to 8.3 μm, and the encapsulation efficiencies were >50% for all the formulations. The drug-release curves showed no initial burst release from the microparticle formulation. Instead, a slow and controlled drug release was observed over 24 hours that followed Higuchi kinetics. The cumulative amount of DEET permeated (over 24 h) from the DEET solution (control), and the formulation was 211.6±19.5 μg/cm2 and 4.07±0.08 μg/cm2, respectively.

    Conclusion: A significantly low DEET permeation from the microparticle formulations indicated minimal absorption of the drug into the body and thus, reduced systemic toxicity. Thixotropic evaluation of the hydrogel formulation demonstrated a hysteresis loop that fitted closely to the Herschel-Bulkley rheological model, ensuring an effortless application and prolonged retention on the skin. Hence, it can be concluded that the developed formulation is an effective delivery approach for controlled insect repellent activity with reduced skin absorption.

  7. Albaayit SFA, Al-Khafaji ASK, Alnaimy HS
    Turk J Pharm Sci, 2019 Sep;16(3):362-365.
    PMID: 32454736 DOI: 10.4274/tjps.galenos.2018.52244
    Objectives: Moringa peregrina has long been used in folk medicine to treat diseases including fever, headache, burns, constipation, gut pains, and inflammation. Nitric oxide (NO) and interleukin-1β (IL-1β) play an important role in the pathophysiology of inflammation. The objectives of this study were to determine the effect of M. peregrina seed ethanolic extract (MPSE) on the viability of and NO and IL-1β production by lipopolysaccharide (LPS)-activated macrophage (J774A.1) cell line.

    Materials and Methods: The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay was used to determine the cytotoxic effect of MPSE treatment at concentrations ranging from 31.15 to 1000 μg/mL. The NO concentration was determined by Griess assay and IL-1β proinflammatory cytokine concentration by enzyme-linked immunosorbent assay in the supernatant of MPSE-treated LPS-activated J774A.1 cell culture.

    Results: The results show that the MPSE was not cytotoxic at 1000 μg/mL but significantly (p<0.001) inhibited NO and IL-1β production by the LPS-activated macrophage J774A.1 cells.

    Conclusion: These findings suggest that M. peregrina seed extract can be used to treat and prevent inflammatory diseases through the inhibition of inflammatory mediators.

  8. Abbasi MA, Rehman AU, Siddiqui SZ, Sheeza A, Nazir S, Ahmad I, et al.
    Turk J Pharm Sci, 2017 Apr;14(1):49-55.
    PMID: 32454594 DOI: 10.4274/tjps.84756
    Objectives: The present research work was aimed to synthesize some new sulfonamides bearing 1,4-benzodioxin ring, which might have suitable antibacterial potential and can be used as possible therapeutic agents for inflammatory ailments.

    Materials and Methods: The synthesis was accomplished by the reaction of 2,3-dihydro-1,4-benzodioxin-6-amine (1) with 4-methylbenzenesulfonyl chloride (2) using 10% aqueous Na2CO3 to afford N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (3). Further the parent molecule 3 was reacted with different alkyl/aralkyl halides (4a-e) to achieve N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamides (5a-e), using polar aprotic solvent; N,N-dimethylformamide (DMF) and catalytic amount of lithium hydride as base. The characterization of synthesized compounds was conducted by contemporary spectral techniques e.g., IR, 1H-NMR and EI-MS. Then these molecules were subjected to screening against various bacterial strains and their inhibitory potential against Lipoxygenase was also ascertained.

    Results: The screening results against various Gram-positive and Gram-negative bacterial strains revealed that N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (3), N-(2-bromoethyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5a) and N-(2-phenethyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5b) showed good inhibitory activity as compared to standard Ciprofloxacin. Moreover, N-(3-phenylpropyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5c) and N-(4-chlorobenzyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfon-amide (5e) displayed decent inhibition against lipoxygenase enzyme relative to standard Baicalein.

    Conclusion: On the basis of results obtained it can be concluded that the synthesized sulfonamides may provide an overall indispensable basis to introduce new drug candidates for the cure of inflammatory and other associated diseases.

  9. Sheshala R, Wai NZ, Said ID, Ashraf K, Lim SM, Ramasamy K, et al.
    Turk J Pharm Sci, 2022 Dec 21;19(6):671-680.
    PMID: 36544377 DOI: 10.4274/tjps.galenos.2021.40121
    OBJECTIVES: Orthosiphon stamineus Benth. (OS) is a commonly used medicinal plant for curbing bacterial infections globally. This work aimed to fabricate poloxamer and chitosan-based in situ gels loaded with standardized aqueous-ethanolic OS leaf extracts and investigate their antimicrobial efficacy as a potential remedy against ocular infections.

    MATERIALS AND METHODS: In situ gels containing 0.5% w/v OS extract prepared using cold dispersion method were subjected to physicochemical characterization, including in vitro-release studies. Antimicrobial efficacy was tested against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using agar diffusion method.

    RESULTS: Thin layer chromatography and high performance liquid chromatography chromatograms confirmed the presence of rosmarinic acid (RA) and sinensitin in OS extracts with same retention factor (0.26 and 0.49) and retention times (12.2 and 20.7 min) against reference standards. A homogenous brown coloured in situ gel exhibited low viscosity as a solution and increased viscosity in gel form at ocular temperature. The optimized formulations, P7 (21% P407/4% P188), P8 (21% P407/5% P188) and F5 (1.5% chitosan and 45% β-glycerophosphate) exhibited ideal ocular pH (7.27-7.46), phase transition at ocular temperature (33-37°C) and prolonged RA release up to 12 h. Formulation F5 showed an inhibition zone of 4.3 mm against M. luteus.

    CONCLUSION: Among all, formulation F5 alone exhibited modest antimicrobial activity against M. luteus. OS extracts at 5% and 10% were most active against tested bacteria however, loading them into in situ gels resulted in sedimentation. Hence, isolation of RA from OS extract is suggested before loading into formulations for a better antimicrobial activity.

  10. Shirbhate E, Pandey J, Patel VK, Veerasamy R, Rajak H
    Turk J Pharm Sci, 2023 Aug 22;20(4):270-284.
    PMID: 37606012 DOI: 10.4274/tjps.galenos.2022.12269
    The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for histone deacetylase (HDAC) inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anticancer activity. We have selected a dataset from earlier research findings. The target and ligand molecules were procured from recognized databases and incorporated into pivotal findings such as molecular docking (XP glide), e-pharmacophore study and 3D QSAR model designing study (phase). Docking revealed molecule 39 with better docking score and well binding contact with the protein. 3D QSAR analysis, which was performed for partial least squares factor 5 reported good 0.9877 and 0.7142 as R2 and Q2 values and low standard of deviation: 0.1049 for hypothesis AADRR.139. Based on the computational outcome, it has been concluded that molecule 39 is an effective and relevant candidate for inhibition of HDAC activity. Moreover, these computational approaches motivate to discover novel drug candidates in pharmacological and healthcare sectors.
  11. Shiek Abdul Kadhar Mohamed Ebrahim HR, Chungath TT, Sridhar K, Siram K, Elumalai M, Ranganathan H, et al.
    Turk J Pharm Sci, 2021 Oct 28;18(5):565-573.
    PMID: 34719154 DOI: 10.4274/tjps.galenos.2021.91145
    OBJECTIVES: The present study aimed to develop and validate a discriminative dissolution method for tetrahydrocurcumin (THC), a Biopharmaceutical Classification System class II drug, by a simple ultraviolet (UV) spectrophotometric analysis. The final dissolution medium composition was selected based on the solubility and stability criteria of the drug.

    MATERIALS AND METHODS: As a prerequisite for this, the solubility of the drug was assessed in media of different pH (1.2-7.4), and surfactant concentrations of 0.5-1.5% (w/v) sodium lauryl sulfate (SLS) in water, and pH 7.4 phosphate buffer. The dissolved drug concentration in each medium was quantified by UV analysis at 280 nm wavelength.

    RESULTS: The drug solubility was found to be high at a pH of 1.2 and 7.4. The media with surfactant enhanced solubility of the drug by approximately 17-fold and exhibited better sink conditions. The discriminative power of the developed dissolution medium (i.e., 1% w/v SLS in pH 7.4) was determined by performing in vitro dissolution studies of the prepared THC tablets and comparing their release profiles using fit factors (f1 and f2). The results of the fit factor comparisons made between the dissolution profiles of THC tablets proved the discriminative ability of the medium. The validation of the developed dissolution method was performed by international guidelines and the method showed specificity, linearity, accuracy, and precision within the acceptable range.

    CONCLUSION: The proposed dissolution method was found to be adequate for the routine quality control analysis of THC, as there is no specified dissolution method for the drug in the pharmacopoeia.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links