Displaying all 11 publications

Abstract:
Sort:
  1. Wong SS, Abd-Jamil J, Abubakar S
    Viral Immunol, 2007 Sep;20(3):359-68.
    PMID: 17931106
    Outbreaks involving dengue viruses (DENV) of the same genotype occur in a cyclical pattern in Malaysia. Two cycles of outbreaks involving dengue virus type 2 (DENV-2) of the same genotype occurred in the 1990s in the Klang Valley, Malaysia. Sera of patients from the first outbreak and sera of mice inoculated with virus from the same outbreak had poorer neutralization activity against virus of the second outbreak. Conversely, patient sera from the second outbreak showed higher neutralization titer against virus of the early outbreak. At subneutralizing concentrations, sera of mice immunized with second outbreak virus did not significantly enhance infection with viruses from the earlier outbreak. Amino acid substitution from valine to isoleucine at position 129 of the envelope protein (E), as well as threonine to alanine at position 117 and lysine to arginine at position 272 of the NS1 protein, differentiated viruses of the two outbreaks. These findings highlight the potential influence of specific intragenotypic variations in eliciting varied host immune responses against the different DENV subgenotypes. This could be an important contributing factor in the recurring homogenotypic dengue virus outbreaks seen in dengue-endemic regions.
  2. Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F
    Viral Immunol, 2016 05;29(4):198-211.
    PMID: 26900835 DOI: 10.1089/vim.2015.0127
    Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
  3. Rodriguez JJ, Horvath CM
    Viral Immunol, 2004;17(2):210-9.
    PMID: 15279700
    Interferon (IFN) can activate Signal Transducer and Activator of Transcription (STAT) proteins to establish a cellular antiviral response and inhibit virus replication. Many viruses have evolved strategies to inhibit this antiviral mechanism, but paramyxoviruses are unique in their abilities to directly target the IFN-responsive STAT proteins. Hendra virus and Nipah virus (Henipaviruses) are recently emerged paramyxoviruses that are the causative agents of fatal disease outbreaks in Australia and peninsular Malaysia. Similar to other paramyxoviruses, Henipaviruses inhibit IFN signal transduction through a virus-encoded protein called V. Recent studies have shown that Henipavirus V proteins target STAT proteins by inducing the formation of cytoplasmically localized high molecular weight STAT-containing complexes. This sequestration of STAT1 and STAT2 prevents STAT activation and blocks antiviral IFN signaling. As the V proteins are important factors for host evasion, they represent logical targets for therapeutics directed against Henipavirus epidemics.
  4. Meena AA, Murugesan A, Sopnajothi S, Yong YK, Ganesh PS, Vimali IJ, et al.
    Viral Immunol, 2019 09 18;33(1):54-60.
    PMID: 31532346 DOI: 10.1089/vim.2019.0100
    Dengue virus (DENV) infection has become an increasingly common concern in tropical and subtropical regions. It has protean manifestations ranging from febrile phase to severe life-threatening illness. In this study, we estimated Th1 and Th2 cytokines and correlated the levels with dengue severity along with certain hematological and biochemical parameters. We also studied the seroprevalence of dengue between October and December 2017 at the Government Theni Medical College, India. Individuals with dengue fever (DF) were positive for either IgM or IgG, or both. The biochemical and hematological parameters along with plasma tumor necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), granulocyte monocyte-colony stimulating factor (GM-CSF), interleukin (IL)-13, IL-12p70, IL-10, IL-5, IL-4, and IL-2 cytokines were estimated. The prevalence of DF was 42.9% during the study period. IL-2, TNF-α, IL-4, and IL-10 levels were significantly elevated (p 
  5. Azman AF, Chia SL, Sekawi Z, Yusoff K, Ismail S
    Viral Immunol, 2021 04 09;34(6):421-426.
    PMID: 33835870 DOI: 10.1089/vim.2020.0217
    Human respiratory syncytial virus (RSV) is one of the major causes of childhood acute lower respiratory tract infection worldwide. Autophagy is an intracellular pathway involved in nutrient recycling. Recently, autophagy has been reported to play a role in regulating host cytokine response to several viruses, including vesicular stomatitis virus and human immunodeficiency virus. Previous in vivo studies using mouse model has shown that inhibition of autophagy reduces RSV-induced cytokine production. However, the role of autophagy in modulating RSV-induced cytokine response in human cells has not been reported. We investigated the role of autophagy in regulating the production of the cytokines C-X-C motif ligand 8 (CXCL8) and C-C motif ligand 5 (CCL5), in RSV-infected human bronchial epithelium BEAS-2B cells. Fluorescent microscopic analysis showed that RSV infection induced autophagosome formation in BEAS-2B cells. This autophagy inducing ability of RSV was further confirmed by flow cytometry. The effects of pharmacological inhibition of autophagy by SAR405 or chloroquine on cell death and cytokine release were quantified using lactate dehydrogenase assay and enzyme-linked immunosorbent assay (ELISA), respectively. We found that SAR405 or chloroquine did not cause cell death. Importantly, ELISA analysis showed that pharmacological inhibition of autophagy by SAR405 or chloroquine did not affect the productions of both CXCL5 and CXCL8. In contrast to the previous studies using mouse model, our data suggest that pharmacological inhibition of autophagy may not be a suitable strategy in controlling RSV-induced airway inflammation.
  6. Raihan R, Akbar SMF, Al Mahtab M, Khan MSI, Tabassum S, Tee KK, et al.
    Viral Immunol, 2020 09;33(7):530-534.
    PMID: 32513066 DOI: 10.1089/vim.2019.0198
    Hepatitis B virus (HBV) is a noncytopathic virus and billions of HBV-infected patients live uneventful lives and do not suffer from notable liver damage. However, HBV also causes progressive liver diseases characterized by hepatic inflammation, hepatic fibrosis, and liver cancer in millions of HBV-infected patients. The goal of this study was to evaluate the role of mutant HBV in HBV pathogenesis. In a cohort of 360 chronic HBV-infected patients, mutations at T1762/A1764 of HBV genome were detected in most of the patients with HBV-induced liver cirrhosis and hepatocellular carcinoma. To explore if mutations at T1762/A1764 of HBV genome has any role in progressive liver disease, peripheral blood mononuclear cells (PBMCs) and antigen-presenting dendritic cells (DCs) were isolated from five chronic hepatitis B (CHB) patients with mutations at T1762/A1764 and five comparable patients of CHB without mutations at T1762/A1764. DCs were pulsed with hepatitis B surface antigen (HBsAg). The levels of cytokines produced by PBMCs and DCs as well as nitrite production by DCs were evaluated. Significantly higher levels of interleukin-12, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta were detected in cultures of PBMCs, DCs, and HBsAg-pulsed DCs from CHB patients with mutations at T1762/A1764 compared with those without mutations (p 
  7. Wong M, Woolford L, Hasan NH, Hemmatzadeh F
    Viral Immunol, 2017 05;30(4):258-263.
    PMID: 28426340 DOI: 10.1089/vim.2016.0041
    In this study, canine adenoviruses (CAdVs) from two acute fatal cases of infectious canine hepatitis (ICH) were analyzed using molecular detection and sequencing of the pVIII, E3, and fiber protein genes. Pathological findings in affected dogs were typical for CAdV-1 associated disease, characterized by severe centrilobular to panlobular necrohemorrhagic hepatitis and the development of disseminated intravascular coagulation in the terminal stages of disease. Comparison of partial genome sequences revealed that although these newly detected viruses mainly had CAdV-1 genome characteristics, their pVIII gene was more similar to that of CAdV-2. This likely suggests that a recombination has occurred between CAdV-1 and CAdV-2, which possibly explains the cause of vaccine failure or increased virulence of the virus in the observed ICH cases.
  8. Preeyaa SU, Murugesan A, Sopnajothi S, Yong YK, Tan HY, Larsson M, et al.
    Viral Immunol, 2020 11;33(9):610-615.
    PMID: 32996843 DOI: 10.1089/vim.2020.0149
    Peripheral follicular helper T (pTfh) cells represent specialized CD4+ T cells that help B cells to secrete antibodies. Dengue infection appears to cause immune activation in a wide array of immune cells. Herein, we investigated the signatures of immune activation of circulating Tfh cells and mucosal-associated invariant T (MAIT) cells in adult subjects with confirmed acute clinical dengue virus (DENV) infection by multiparametric flow cytometry. The acute DENV infection induced a significant expansion of highly activated pTfh cells and circulating MAIT cells during acute febrile infection. We found a higher frequency of activated PD-1+ Tfh cells and CD38+ pTfh cells in clinical DENV infection. We also found similar activated and expanding phenotypes of MAIT cells in the patients tested. The total counts of activated pTfh cells and circulating MAIT cells were higher in dengue patients relative to healthy controls. We concluded that pTfh cells and circulating MAIT cells represent activated phenotypes in acute DENV infection.
  9. Cheong HC, Cheok YY, Chan YT, Sulaiman S, Looi CY, Alshanon AF, et al.
    Viral Immunol, 2022 Nov;35(9):586-596.
    PMID: 36301533 DOI: 10.1089/vim.2022.0082
    Infection caused by the Zika virus (ZIKV) can lead to serious neurological complications such as microcephaly in neonates. At present, no approved ZIKV vaccine is available, but few vaccine candidates are undergoing clinical trial. One major challenge faced is antibody-dependent enhancement (ADE) reaction that may provoke severe outcome in subsequent infection by ZIKV or other flaviviruses. Thus, more efforts should be dedicated to understanding ADE in designing a safe and effective vaccine to minimize the consequence of the potentially fatal infection's complications and to tackle potential ZIKV reemergence. This review discusses different types of ZIKV vaccine candidates that are currently underway in various stages of preclinical and clinical evaluations.
  10. Machain-Williams C, Reyes-Solis GC, Blitvich BJ, Laredo-Tiscareño V, Dzul-Rosado AR, Kim S, et al.
    Viral Immunol, 2023 Mar;36(2):101-109.
    PMID: 36862827 DOI: 10.1089/vim.2022.0110
    Dengue virus (DENV) is the etiological agent of dengue, the most important mosquito-transmitted viral disease of humans worldwide. Enzyme-linked immunosorbent assays (ELISAs) designed to detect DENV IgM are commonly used for dengue diagnosis. However, DENV IgM is not reliably detected until ≥4 days after illness onset. Reverse transcription-polymerase chain reaction (RT-PCR) can diagnose early dengue but requires specialized equipment, reagents, and trained personnel. Additional diagnostic tools are needed. Limited work has been performed to determine whether IgE-based assays can be used for the early detection of vector-borne viral diseases, including dengue. In this study, we determined the efficacy of a DENV IgE capture ELISA for the detection of early dengue. Sera were collected within the first 4 days of illness onset from 117 patients with laboratory-confirmed dengue, as determined by DENV-specific RT-PCR. The serotypes responsible for the infections were DENV-1 and DENV-2 (57 and 60 patients, respectively). Sera were also collected from 113 dengue-negative individuals with febrile illness of undetermined etiology and 30 healthy controls. The capture ELISA detected DENV IgE in 97 (82.9%) confirmed dengue patients and none of the healthy controls. There was a high false positivity rate (22.1%) among the febrile non-dengue patients. In conclusion, we provide evidence that IgE capture assays have the potential to be explored for early diagnosis of dengue, but further research is necessary to address the possible false positivity rate among patients with other febrile illnesses.
  11. Vimali J, Yong YK, Murugesan A, Ashwin R, Balakrishnan P, Raju S, et al.
    Viral Immunol, 2023 Jan;36(1):55-62.
    PMID: 36355180 DOI: 10.1089/vim.2022.0144
    Scientific observations indicate that an actively prevailing systemic condition could alleviate the pathology of another disease. Human pegivirus (HPgV), a highly ubiquitous flavivirus is believed to be associated with slow human immunodeficiency virus (HIV) disease progression, and has seldom been linked to hepatic pathology. In this study, we investigated whether HPgV seropositivity had any impact on surrogate markers of HIV disease progression in a cohort of HIV-infected HPgV seropositive (n = 28) and seronegative (n = 12) individuals who were prospectively evaluated for absolute CD4+ T cell counts, plasma viral load (PVL), liver enzymes, and plasma cytokine levels. The HIV PVL was relatively lower in HPgV seropositive than in HPgV seronegative HIV-infected subjects. Clinical markers of hepatic injury were significantly low among HPgV seropositive HIV-infected participants. HPgV seropositive individuals showed significantly higher levels of interleukin-7 (IL-7), and although not significant, the levels of IL-6 were lower among HPgV seropositive subjects. Spearman correlation analysis showed that the absolute CD4+T cell count was inversely correlated with HIV PVL. Exposure to HPgV appears to have a positive prognostic impact on the levels of surrogate biomarkers of HIV disease progression.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links