Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Dadrasnia A, Pariatamby A
    Waste Manag Res, 2016 Mar;34(3):246-53.
    PMID: 26675494 DOI: 10.1177/0734242X15621375
    In phytoremediation of co-contaminated soil, the simultaneous and efficient remediation of multiple pollutants is a major challenge rather than the removal of pollutants. A laboratory-scale experiment was conducted to investigate the effect of 5% addition of each of three different organic waste amendments (tea leaves, soy cake, and potato skin) to enhance the phytoaccumulation of lead (60 mg kg(-1)) and diesel fuel (25,000 mg kg(-1)) in co-contaminated soil by Dracaena reflexa Lam for a period of 180 day. The highest rate of oil degradation was recorded in co-contaminated soil planted with D. reflexa and amended with soy cake (75%), followed by potato skin (52.8%) and tea leaves (50.6%). Although plants did not accumulate hydrocarbon from the contaminated soil, significant bioaccumulation of lead in the roots and stems of D. reflexa was observed. At the end of 180 days, 16.7 and 9.8 mg kg(-1) of lead in the stems and roots of D. reflexa were recorded, respectively, for the treatment with tea leaves. These findings demonstrate the potential of organic waste amendments in enhancing phytoremediation of oil and bioaccumulation of lead.
  2. Idris J, Shirai Y, Andou Y, Mohd Ali AA, Othman MR, Ibrahim I, et al.
    Waste Manag Res, 2016 Feb;34(2):176-80.
    PMID: 26612557 DOI: 10.1177/0734242X15616472
    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.
  3. Govindan SS, Agamuthu P
    Waste Manag Res, 2014 Oct;32(10):1005-14.
    PMID: 25323145 DOI: 10.1177/0734242X14552551
    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills.
  4. Johari K, Alias AS, Saman N, Song ST, Mat H
    Waste Manag Res, 2015 Jan;33(1):81-8.
    PMID: 25492720 DOI: 10.1177/0734242X14562660
    The preparation of chars and activated carbon as low-cost elemental mercury adsorbents was carried out through the carbonisation of coconut husk (pith and fibre) and the activation of chars with potassium hydroxide (KOH), respectively. The synthesised adsorbents were characterised by using scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The elemental mercury removal performance was measured using a conventional flow type packed-bed adsorber. The physical and chemical properties of the adsorbents changed as a result of the carbonisation and activation process, hence affecting on the extent of elemental mercury adsorption. The highest elemental mercury (Hg°) adsorption capacity was obtained for the CP-CHAR (3142.57 µg g(-1)), which significantly outperformed the pristine and activated carbon adsorbents, as well as higher than some adsorbents reported in the literature.
  5. Claoston N, Samsuri AW, Ahmad Husni MH, Mohd Amran MS
    Waste Manag Res, 2014 Apr;32(4):331-9.
    PMID: 24643171 DOI: 10.1177/0734242X14525822
    Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
  6. Othman J, Khee PC
    Waste Manag Res, 2014 May;32(5):454-7.
    PMID: 24595362 DOI: 10.1177/0734242X14523662
    A choice experiment analysis was conducted to estimate the preference for specific waste disposal technologies in Malaysia. The study found that there were no significant differences between the choice of a sanitary landfill or an incinerator. What matters is whether any disposal technology would lead to obvious social benefits. A waste disposal plan which is well linked or integrated with the community will ensure its acceptance. Local authorities will be challenged to identify solid waste disposal sites that are technically appropriate and also socially desirable.
  7. Ahmad SZ, Ahamad MS, Yusoff MS
    Waste Manag Res, 2014 Jan;32(1):24-33.
    PMID: 24241167 DOI: 10.1177/0734242X13507313
    Proper implementation of landfill siting with the right regulations and constraints can prevent undesirable long-term effects. Different countries have respective guidelines on criteria for new landfill sites. In this article, we perform a comparative study of municipal solid waste landfill siting criteria stated in the policies and guidelines of eight different constitutional bodies from Malaysia, Australia, India, U.S.A., Europe, China and the Middle East, and the World Bank. Subsequently, a geographic information system (GIS) multi-criteria evaluation model was applied to determine new suitable landfill sites using different criterion parameters using a constraint mapping technique and weighted linear combination. Application of Macro Modeler provided in the GIS-IDRISI Andes software helps in building and executing multi-step models. In addition, the analytic hierarchy process technique was included to determine the criterion weight of the decision maker's preferences as part of the weighted linear combination procedure. The differences in spatial results of suitable sites obtained signifies that dissimilarity in guideline specifications and requirements will have an effect on the decision-making process.
  8. Dadrasnia A, Agamuthu P
    Waste Manag Res, 2013 Nov;31(11):1133-9.
    PMID: 24025373 DOI: 10.1177/0734242X13502382
    Toxic inorganic and organic chemicals are major contributors to environmental contamination and pose major health risks to human population. In this work, Dracaena reflexa and Podocarpus polystachyus were investigated for their potential to remove hydrocarbons from 2.5% and 1% diesel fuel-contaminated soil amended individually with 5% organic wastes (tea leaf, soy cake and potato skin) for a period of 270 days. Loss of 90% and 99% oil was recorded in soil contaminated with 2.5% and 1% oil with soy cake amendment, respectively, compared with 52% and 62% in unamended soil with D. reflexa at the end of 270 days. Similarly, 84% and 91% oil loss was recorded for P. polystachyus amended with organic wastes in 2.5% and 1% oil, respectively. Diesel fuel disappeared more rapidly in the soil amendment with SC than in other organic waste supplementation. It was evident that plants did not accumulate hydrocarbon from the soil, while the number of hydrocarbon-utilizing bacteria was high in the rhizosphere, thus suggesting that the mechanism of the oil degradation was rhizodegradation. The kinetic model result indicated a high rate of degradation in soil amendment with SC at 1% with D. reflexa compared with other treatments. Thus, a positive relationship was observed between diesel hydrocarbon degradation with plant biomass production. Dracaena reflexa with organic wastes amendment has a greater potential of restoring hydrocarbon-contaminated soil compared to P. polystachyus plant.
  9. Fauziah SH, Emenike CU, Agamuthu P
    Waste Manag Res, 2013 Oct;31(10 Suppl):75-80.
    PMID: 23800442 DOI: 10.1177/0734242X13492840
    Pollutants put great stress on the environment, especially the aquatic ecosystem; therefore, the ease with which pollutants migrate in water is a subject of global concern. In this study, leachate from landfill that was analyzed with the objective of understanding the potential impact to the environment was tested on Pangasius sutchi. Heavy metals available at various concentrations in raw leachate samples of both closed and active landfills necessitated the determination of their degree of bioaccumulation in this fish species in order to enrich the risk data on toxicity of effluents. Zinc (3.2 µg g(-1)), iron (2.1 µg g(-1)) and chromium (0.24 µg g(-1)) detected in the fish within 96 h of acute exposure is of concern. A histopathology test on excised liver of P. sutchi indicated cellular disruption from normal stain. Heterogeneous effluents like leachate may affect not only groundwater but can endanger aquatic ecosystems, especially in some regions where improper waste disposal and treatment allow the flow of leachate into surface water courses. Though metals might be beneficial to organisms, the extent at which they can accumulate in leachate-exposed fish is a risk and can initiate metal toxicity in aquatic life.
  10. Mohd Adnan SN, Yusoff S, Piaw CY
    Waste Manag Res, 2013 Jun;31(6):599-612.
    PMID: 23528999 DOI: 10.1177/0734242X13482031
    A total of 20 landfills are located in State of Selangor, Malaysia. This includes the Ampar Tenang landfill site, which was closed on 26 January 2010. It was reported that the landfill has been upgraded to a level I type of sanitary classification. However, the dumpsite area is not being covered according to the classification. In addition, municipal solid waste was dumped directly on top of the unlined natural alluvium formation. This does not only contaminate surface and subsurface soils, but also initiates the potential risk of groundwater pollution. Based on previous studies, the Ampar Tenang soil has been proven to no longer be capable of preventing pollution migration. In this study, metal concentrations of soil samples up to 30 m depth were analyzed based on statistical analysis. It is very significant because research of this type has not been carried out before. The subsurface soils were significantly polluted by arsenic (As), lead (Pb), iron (Fe), copper (Cu) and aluminium (Al). As and Pb exceeded the safe limit values of 5.90 mg/kg and 31.00 mg/kg, respectively, based on Provincial Sediment Quality Guidelines for Metals and the Interim Sediment Quality Values. Furthermore, only Cu concentrations showed a significantly decreasing trend with increasing depth. Most metals were found on clay-type soils based on the cluster analysis method. Moreover, the analysis also differentiates two clusters: cluster I-Pb, As, zinc, Cu, manganese, calcium, sodium, magnesium, potassium and Fe; cluster II-Al. Different clustering may suggest a different contamination source of metals.
  11. Emenike CU, Fauziah SH, Agamuthu P
    Waste Manag Res, 2012 Sep;30(9):888-97.
    PMID: 22593235 DOI: 10.1177/0734242X12443585
    Landfilling is a major option in waste management hierarchy in developing nations. It generates leachate, which has the potential of polluting watercourses. This study analysed the physico-chemical components of leachate from a closed sanitary landfill in Malaysia, in relation to evaluating the toxicological impact on fish species namely Pangasius sutchi S., 1878 and Clarias batrachus L., 1758. The leachate samples were taken from Air Hitam Sanitary Landfill (AHSL) and the static method of acute toxicity testing was experimented on both fish species at different leachate concentrations. Each fish had an average of 1.3 ± 0.2 g wet weight and length of 5.0 ± 0.1 cm. Histology of the fishes was examined by analysing the gills of the response (dead) group, using the Harris haemtoxylin and eosin (H&E) method. Finneys' Probit method was utilized as a statistical tool to evaluate the data from the fish test. The physico-chemical analysis of the leachate recorded pH 8.2 ± 0.3, biochemical oxygen demand 3500 ± 125 mg L(-1), COD 10 234 ± 175 mg L(-1), ammonical nitrogen of 880 ± 74 mg L(-1), benzene 0.22 ± 0.1 mg L(-1) and toluene 1.2 ± 0.4 mg L(-1). The 50% lethality concentration (LC(50)) values calculated after 96 h exposure were 3.2% (v/v) and 5.9% (v/v) of raw leachate on P. sutchi and C. batrachus, respectively. The H&E staining showed denaturation of the nucleus and cytoplasm of the gills of the response groups. Leachate from the sanitary landfill was toxic to both fish species. The P. sutchi and C. batrachus may be used as indicator organisms for leachate pollution in water.
  12. Fauziah SH, Agamuthu P
    Waste Manag Res, 2012 Jul;30(7):656-63.
    PMID: 22455994 DOI: 10.1177/0734242X12437564
    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.
  13. Yeap KS, Mohd Yaacob N, Rao SP, Hashim NR
    Waste Manag Res, 2012 Dec;30(12):1251-60.
    PMID: 23103414 DOI: 10.1177/0734242X12465459
    This article presents lessons learned from a design project that explored the possibility of incorporating waste into the design of a school prototype. The authors worked with professional architects, a waste artist, environmental scientists and local waste operators to uncover new uses and applications for discarded items. As a result, bottles, aluminium cans, reclaimed doors, crushed concrete and second-hand bricks, etc. were identified, explored and integrated into the architectural design. This article serves as a catalyst that advocates the use of reclaimed materials in the field of design and planning. In particular, it highlights the challenges and issues that need to be addressed in carrying out design work with waste. Designers and practitioners interested in minimizing waste generation by proposing the use of reclaimed materials will find this article useful.
  14. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
  15. Akinbile CO, Yusoff MS
    Waste Manag Res, 2012 May;30(5):498-505.
    PMID: 21930519 DOI: 10.1177/0734242X11417974
    Solid waste comprised of a grass clippings mixture was decomposed using a locally-made compost bin in Pulau Pinang, Malaysia, to eliminate challenges associated with improper waste disposal. Bulk density, pH, moisture content, nutrients content, nitrogen (N), phosphorus (P), potassium (K), iron (Fe), zinc (Zn), copper (Cu) and carbon/nitrogen (C/N) ratio were determined over 77 days. A 34% reduction in compost bin volume was observed and bulk density and pH were also reduced from 732 to 482 kg m(-3) and 7.82 to 8.41, respectively, indicating fairly good performance. The final moisture content and C/N ratio were 44.06% and 14 : 1, respectively, and the results also showed that the presence of nutrients and heavy metals in the final compost were within acceptable limits for use as a soil conditioner. Final concentrations of N, P and K were 347 mg kg(-1), 510 mg kg(-1) and 14.8 g kg(-1) and for heavy metals, Fe, Zn and Cu were 5308, 300 and 20 mg kg(-1), respectively, which considerably assisted in the decomposition process. Processed waste materials from the bin were shown to be excellent organic fertilizers with over 75% germination index for seeds grown into bean sprouts in 72 h. An improved bin design to eliminate greenhouse gas emission into the environment is suggested.
  16. Agamuthu P, Victor D
    Waste Manag Res, 2011 Sep;29(9):945-53.
    PMID: 21771873 DOI: 10.1177/0734242X11413332
    This paper seeks to examine the provisions for extended producer responsibility (EPR) within the Malaysian environmental and waste management policies and to determine its existing practice and future prospects in Malaysia. Malaysian waste generation has been increasing drastically where solid waste generation was estimated to increase from about 9.0 million tonnes in 2000 to about 10.9 million tonnes in 2010, to about 12.8 million tonnes in 2015 and finally to about 15.6 million tonnes in 2020. Malaysian e-waste was estimated to be about 652 909 tonnes in 2006 and was estimated to increase to about 706 000 tonnes in 2010 and finally to about 1.2 million tonnes in 2020. The projected increasing generation of both solid waste and scheduled wastes is expected to burden the country's resources and environment in managing these wastes in a sustainable manner. The concept of EPR is provided for in the Malaysia waste management system via the Environmental Quality Act 1974 and the Solid Waste and Public Cleansing Management Act 2007. However, these provisions in the policy are generic in nature without relevant regulations to enable its enforcement and as such the concept of EPR still remains on paper whereas the existing practice of EPR in Malaysia is limited through voluntary participation. In conclusion, policy trends of EPR in Malaysia seem to indicate that Malaysia may be embarking on the path towards EPR through the enactment of an EPR regulation.
  17. Abushammala MF, Noor Ezlin Ahmad Basri, Basri H, Ahmed Hussein El-Shafie, Kadhum AA
    Waste Manag Res, 2011 Aug;29(8):863-73.
    PMID: 20858637 DOI: 10.1177/0734242X10382064
    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.
  18. Shuokr Qarani Aziz, Hamidi Abdul Aziz, Mohammed Jk Bashir, Mohd Suffian Yusoff
    Waste Manag Res, 2011 Aug;29(8):880-7.
    PMID: 21242179 DOI: 10.1177/0734242X10387462
    Solid waste collection and disposal are among the most vital services provided to about 700 770 residents of the city of Erbil in northern Iraq. As such, proper waste management systems that consider both the quantity and composition of domestic solid waste are strongly required to address the increasing amount of solid waste. Unfortunately, these essential data are not easily available. The present study sought to gather data on the quantity and composition of domestic solid waste collected from different quarters in Erbil, and the feasibility of recycling these wastes. The solid waste generation rate (GR), uncompacted density, and weight percentages of combustible and incombustible materials were determined based on the collected materials (i.e., food, plastic, paper, metal, glass and cloth). The results show that the average GR and uncompacted density were 0.654 kg capita(-1) day(-1) and 175.72 kg m(-3), respectively. The weight percentages of food, plastic, paper, metal, glass, and cloth as components of domestic solid waste were 79.34, 6.28, 5.9, 3.6, 3.42 and 1.45%, respectively.
  19. Agamuthu P, Fauziah SH
    Waste Manag Res, 2011 Jan;29(1):13-9.
    PMID: 20880936 DOI: 10.1177/0734242X10383080
    Malaysia disposes of 28,500 tonnes of municipal solid waste directly into landfills daily. This fact alone necessitates sustainable landfills to avoid adverse impacts on the population and the environment. The aim of the present study was to elucidate the issues and challenges faced by waste managers in moving towards sustainable landfilling in Malaysia. Various factors influence the management of a landfill. Among them is the human factor, which includes attitude and public participation. Although Malaysia's economy is developing rapidly, public concern and awareness are not evolving in parallel and therefore participation towards sustainable waste management through the 'reduce, reuse and recycle' approach (3Rs) is severely lacking. Consequently, landfill space is exhausted earlier than scheduled and this is no longer sustainable in terms of security of disposal. Challenges also arise from the lack of funding and the increase in the price of land. Thus, most waste managers normally aim for 'just enough' to comply with the regulations. Investment for the establishment of landfills generally is minimized since landfilling operations are considered uneconomical after closure. Institutional factors also hamper the practice of sustainable landfilling in the country where 3Rs is not mandatory and waste separation is totally absent. Although there are huge obstacles to be dealt with in moving towards sustainable landfilling in Malaysia, recent developments in waste management policy and regulations have indicated that positive changes are possible in the near future. Consequently, with the issues solved and challenges tackled, landfills in Malaysia can then be managed effectively in a more sustainable manner.
  20. Naganathan S, Razak HA, Hamid SN
    Waste Manag Res, 2010 Sep;28(9):848-60.
    PMID: 20852000 DOI: 10.1177/0734242X09355073
    Incineration of industrial waste produces large quantities of bottom ash which are normally sent to secured landfill, but is not a sustainable solution. Use of bottom ash in engineering applications will contribute to sustainability and generate revenue. One way of using the industrial waste incineration bottom ash is in controlled low-strength material (CLSM). Use of bottom ash in CLSM has problems related to bleeding and excessive strength development and so an additive has to be used to control bleeding and strength development. The main objective of this research is to study the effect of kaolin addition on the performance of CLSM made using industrial waste incineration bottom ash. CLSM mixes were made with bottom ash, cement, and refined kaolin. Various tests were performed on the CLSM in fresh and hardened states including compressive strength, water absorption, California bearing ratio (CBR) and the tests for concentration of leachable substances on the bleed and leachate. The compressive strength of CLSM tested ranged from 0.11 to 9.86 MPa. CBR values ranged from 6 to 46, and water absorption values from 12 to 36%. It was shown that the addition of kaolin delayed the initial setting time of CLSM mixtures, reduced bleeding, lowered the compressive strength, and increased the values of water absorption, sorption, and initial surface absorption. The CLSM tested did not have corrosivity. It was shown that the hardened CLSM was non hazardous, and the addition of kaolin increased the concentration of heavy metals and salts in the bleed and leachate.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links