Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Gazzaz NM, Yusoff MK, Juahir H, Ramli MF, Aris AZ
    Water Environ Res, 2013 Aug;85(8):751-66.
    PMID: 24003601
    This study investigated relationships of a water quality index (WQI) with multiple water quality variables (WQVs), explored variability in water quality over time and space, and established linear and non-linear models predictive of WQI from raw WQVs. Data were processed using Spearman's rank correlation analysis, multiple linear regression, and artificial neural network modeling. Correlation analysis indicated that from a temporal perspective, the WQI, temperature, and zinc, arsenic, chemical oxygen demand, sodium, and dissolved oxygen concentrations increased, whereas turbidity and suspended solids, total solids, nitrate nitrogen (NO3-N), and biochemical oxygen demand concentrations decreased with year. From a spatial perspective, an increase with distance of the sampling station from the headwater was exhibited by 10 WQVs: magnesium, calcium, dissolved solids, electrical conductivity, temperature, NO3-N, arsenic, chloride, potassium, and sodium. At the same time, the WQI; Escherichia coli bacteria counts; and suspended solids, total solids, and dissolved oxygen concentrations decreased with distance from the headwater. Lastly, regression and artificial neural network models with high prediction powers (81.2% and 91.4%, respectively) were developed and are discussed.
  2. Murali V, Ong SA, Ho LN, Wong YS, Hamidin N
    Water Environ Res, 2013 Mar;85(3):270-7.
    PMID: 23581242
    Microbial fuel cells (MFCs) represent an emerging technology that focuses on power generation and effluent treatment. This review compiles articles related to MFCs using azo dye as the substrate. The significance of the general components in MFCs and systems of MFCs treating azo dye is depicted in this review. In addition, degradation of azo dyes such as Congo red, methyl orange, active brilliant red X-3B, amaranth, reactive blue 221, and acid orange 7 in MFCs are summarized. Further exploration and operational modification are suggested to address the challenges of complete removal of azo dye with maximum power generation in an MFC. In addition, a sequential treatment system with MFCs is suggested for complete mineralization of azo dye.
  3. Ong YH, Chua AS, Lee BP, Ngoh GC, Hashim MA
    Water Environ Res, 2012 Jan;84(1):3-8.
    PMID: 22368821
    A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.
  4. Ngu H, Wong KK, Law PL
    Water Environ Res, 2012 Apr;84(4):299-304.
    PMID: 22834217
    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.
  5. Tay KS, Rahman NA, Abas MR
    Water Environ Res, 2011 Aug;83(8):684-91.
    PMID: 21905405
    This study investigated the removal of parabens, N,N-diethyl-m-toluamide (DEET), and phthalates by ozonation. The second-order rate constants for the reaction between selected compounds with ozone at pH 7 were of (2.2 +/-0.2) X 10(6) to (2.9 +/-0.3) X 10(6) M 1/s for parabens, (2.1+/- 0.3) to (3.9 +/-0.5) M-1/s for phthalates, and (5.2 +/-0.3) M-1/s for DEET. The rate constants for the reaction between selected compounds with hydroxyl radical ranged from (2.49 +/-0.06) x 10(9) to (8.5 +/-0.2) x 10(9) M-1/s. Ozonation of selected compounds in secondary wastewater and surface waters revealed that ozone dose of 1 and 3 mg/L yielded greater than 99% depletion of parabens and greater than 92% DEET and phthalates, respectively. In addition, parabens were found to transform almost exclusively through the reaction with ozone, while DEET and phthalates were transformed almost entirely by hydroxyl radicals (.OH).
  6. Jami MS, Rosli NS, Amosa MK
    Water Environ Res, 2016 Jun;88(6):566-76.
    PMID: 26556067 DOI: 10.2175/106143015X14362865227157
    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging.
  7. Din MF, Ponraj M, Low WP, Fulazzaky MA, Iwao K, Songip AR, et al.
    Water Environ Res, 2016 Feb;88(2):118-30.
    PMID: 26803100 DOI: 10.2175/106143015X14362865227913
    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.
  8. Umar M, Aziz HA, Yusoff MS
    Water Environ Res, 2015 Mar;87(3):223-6.
    PMID: 25842532
    Leachate collected from the collection ponds of four landfill sites was investigated and compared for total coliforms and E. coli concentration as representatives of fecal pollution. Concentration of total coliforms and E. coli was comparable for leachate obtained from Kulim Landfill Site (KLS) and Ampang Landfill Site (ALS) with little variations. However, the level of indicator bacteria was significantly lower for Kuala Sepetang Landfill Site (KSLS), whereas Pulau Burung Landfill Site (PBLS) had the lowest concentration for both total coliforms and E. coli. Considering the landfills are currently operational, with the exception of ALS, the presence of indicator bacteria implies their inactivation prior to discharge. High concentration of indicator bacteria in ALS is attributed to the run-off entering the leachate pond. Greater concentration of ammonia and salinity level were partly responsible for lower concentration of indicator bacteria in leachate from KSLS and PBLS, indicating that salinty and ammonia could significantly affect the survival of indicator bacteria.
  9. Gazzaz NM, Yusoff MK, Ramli MF, Juahir H, Aris AZ
    Water Environ Res, 2015 Feb;87(2):99-112.
    PMID: 25790513
    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
  10. Su-Huan K, Fahmi MR, Abidin CZA, Soon-An O
    Water Environ Res, 2016 Nov 01;88(11):2047-2058.
    PMID: 28661323 DOI: 10.2175/106143016X14733681695285
      Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.
  11. Ghadim HB, Hin LS
    Water Environ Res, 2017 Sep 01;89(9):862-870.
    PMID: 28855022 DOI: 10.2175/106143017X14902968254764
      The Bio-Ecological Drainage System (BIOECODS) is a sustainable drainage (SUDS) to demonstrate the 'control at source' approaches for urban stormwater management in Malaysia. It is an environmentally friendly drainage system that was designed to increase infiltration, reduce peak flow at outlet, improve water quality, through different BMPs, such as grass swale, retention pond, etc. A special feature of BIOECODS is ecological swale with on-line subsurface detention. This study attempted to create a model of ecological swale with on-line subsurface conveyance system with InfoWorks SD. The new technique has been used Storm Water Management Model (SWMM) model to describe overland flow routing and Soil Conservation Service Method (SCS) used to model infiltration or subsurface flow. The modeling technique has been proven successful, as the predicted and observed closely match each other, with a mean error of 4.58 to 7.32%. The calibrated model then used to determine the ratio of the flow exchange between the surface and subsurface drainage system. Results from the model showed that the runoff ratio exchange between the surface and subsurface is 60 to 90%.
  12. Rasul MG, Islam MS, Yunus RBM, Mokhtar MB, Alam L, Yahaya FM
    Water Environ Res, 2017 Dec 01;89(12):2088-2102.
    PMID: 28087920 DOI: 10.2175/106143017X14839994522740
      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
  13. Hui YW, Narayanan K, Dykes GA
    Water Environ Res, 2016 Nov 01;88(11):2040-2046.
    PMID: 26704787 DOI: 10.2175/106143016X14504669767292
      The effect of physical shearing on the attachment of six Pseudomonas aeruginosa strains and six Burkholderia cepacia strains to glass, stainless steel, polystyrene and Teflon® was determined. A significant (p < 0.05) decrease in hydrophobicity was apparent for all P. aeruginosa strains (17-36%) and B. cepacia, MS 5 (20%) after shearing. A significant (p < 0.05) decrease in attachment of some P. aeruginosa (0.2-0.5 log CFU/cm2) and B. cepacia (0.2-0.4 log CFU/cm2) strains to some surface types was apparent after shearing. Significant (p < 0.05) correlation was observed for both numbers of flagellated cells and hydrophobicity against attachment to glass, stainless steel and polystyrene for P. aeruginosa while only hydrophobicity showed significant correlation against the same surfaces for B. cepacia. Scanning electron microscopy and protein analysis showed that shearing removed surface proteins from the cells and may have led to the observed changes in hydrophobicity and attachment to abiotic surfaces.
  14. Hamid MAA, Aziz HA, Yusoff MS, Rezan SA
    Water Environ Res, 2021 Apr;93(4):596-607.
    PMID: 32991022 DOI: 10.1002/wer.1461
    The high-strength leachate produced from sanitary landfill is a serious issue around the world as it poses adverse effects on aquatic life and human health. Physio-chemical technology is one of the promising options as the leachate normally presents in stabilized form and not fully amendable by biological treatment. In this research, the effectiveness of natural zeolite (clinoptilolite) augmented electrocoagulation process (hybrid system) for removing high-strength ammonia (3,442 mg/L) and color (8,427 Pt-Co) from naturally saline (15 ppt) local landfill leachate was investigated. A batch mode laboratory-scale reactor with parallel-monopolar aluminum electrodes attached to a direct current (DC) electric power was used as an electrocoagulation reactor for performance enhancement purpose. Optimum operational conditions of 146 g/L zeolite dosage, 600 A/m2 current density, 60 min treatment time, 200 rpm stirring speed, 35 min settling duration, and pH 9 were recorded with up to 70% and 88% removals of ammonia and color, respectively. The estimated overall operational cost was 26.22 $/m3 . The biodegradability of the leachate had improved from 0.05 to 0.27 in all post-treatment processes. The findings revealed the ability of the hybrid process as a viable option in eliminating concentrated ammonia and color in natural saline landfill leachate. PRACTITIONER POINTS: Clinoptilolite was augmented on the electrocoagulation process in saline and stabilized landfill leachate (15 ppt). The high strength NH3 -N (3,442 mg/L) and color (8,427 Pt-Co) were 70% and 88% removed, respectively. The optimum conditions occurred at 140 g/L zeolite, 60 mA/cm2 current density, 60 min, and final pH of 8.20. The biodegradability of the leachate improved from 0.05 to 0.27 after the treatment. This hybrid treatment was simple, faster, and did not require auxiliary electrolyte.
  15. Qadir D, Nasir R, Mukhtar HB, Keong LK
    Water Environ Res, 2020 Sep;92(9):1306-1324.
    PMID: 32170974 DOI: 10.1002/wer.1326
    The asymmetric polyethersulfone (PES-15 wt.%) mixed-matrix membranes were prepared by incorporation of carbon molecular sieve (CMS) with varying concentrations (1, 3, and 5 wt.%). Physicochemical characterization of synthesized membranes was carried out using field emission scanning electron microscope, atomic force microscopy, contact angle, thermogravimetric analysis, zeta potential analyzer, porosity, and mean pore sizes. Performance analysis of synthesized mixed-matrix membranes was carried out by varying the operating parameters such as pressure (2-10 bar), feed concentration (100-1,000 mg/L), and cations type (Na+ , Ca2+ , Mg2+ , and Sn2+ ). Effect of operating parameters and CMS concentration was investigated on pure water flux (PWF), permeate flux, and rejection of membranes. It was found that mixed-matrix membrane containing 15 wt.% PES with 1 wt.% CMS displayed the superior physicochemical characteristics in terms of hydrophilicity (37.9°), surface charge (-13.8 mV), mean pore diameter (6.04 nm), and thermal properties (Tg  = 218.5°C), and overall performance. E5C1 membrane showed 1.5 times higher PWF (75.5 L m-2  hr-1 ) and incremented in rejection for all salts than the nascent membrane. PRACTITIONER POINTS: Carbon molecular sieve-embedded mixed-matrix membranes were synthesized by phase inversion method. The resultant membranes experienced improved hydrophilicity, roughness, surface charge, porosity, and mean pore diameter with 1 wt.% CMS loading. The pure water flux was improved from 55.77 to 75.05 L m-2  hr-1 when 1 wt.% CMS was added in pure PES. The observed rejection of a mixed-matrix membrane with 1 wt.% CMS was the maximum for all salts.
  16. Omar AH, Muda K, Majid ZA, Affam AC, Ezechi EH
    Water Environ Res, 2020 Jan;92(1):73-83.
    PMID: 31276251 DOI: 10.1002/wer.1177
    Biogranulation is an effective biological technology suitable for the treatment of various wastewaters. However, the major drawback of this technique is the long start-up period for biogranule development. Hence, the primary focus of this study was on cell surface hydrophobicity which is the main parameter that indicates cell agglomeration during the initial self-immobilization process of aerobic granulation. The effects of sludge concentration and magnetic activated carbon on cell surface hydrophobicity were investigated in this study. Response surface methodology (RSM) was applied to design, analyze, and optimize the outcome of the study. Experiments were performed at sludge concentration of 1,000-3,000 mg/L and magnetic activated carbon mass of 1-5 g/L with 24 hr of aeration time. The results show that both variables yielded a positive significant effect on the initial development of aerobic granulation with 56% surface hydrophobicity. Interaction effects between variables on the responses were significant with positive estimated interaction effect at all different measured aeration time. The magnetic activated carbon acted as nuclei to induce bacterial attachment and further enhanced the initial process of biogranule development under optimal condition of 1:1.1 (sludge concentration: magnetic activated carbon). PRACTITIONER POINTS: Cell surface hydrophobicity was evaluated Magnetic activated carbon enhanced cell surface hydrophobicity Response surface methodology was employed for analyses Magnetic activate carbon mass and biomass concentration was significant Magnetic activated carbon acted as nuclei to improve biogranulation.
  17. Hung YT, Aziz HA, Ramli SF, Paul HH, Huhnke CR, Adesanmi BM
    Water Environ Res, 2020 Oct;92(10):1504-1509.
    PMID: 32659868 DOI: 10.1002/wer.1399
    This paper reviews the related literature reported in 2019 about various types of wastewaters associated with chemical and allied products. The subjects comprise wastewaters produced from various activities in agricultural, chemical, dye, petrochemical, and pharmaceutical. PRACTITIONER POINTS: Bioflocculant chitosan was used for sludge dewatering and the treatment of water and wastewater, and polishing of sanitary landfill leachate. Alkaline lignin-based flocculants were used to achieve excellent color removal for paper mill sludge. Powdered activated coke was used to remove COD (chemical oxygen demand) from chemical industry wastewater effluents.
  18. Cheah YT, Lakbir Singh HKK, Chan DJC
    Water Environ Res, 2021 Jan 23.
    PMID: 33484623 DOI: 10.1002/wer.1515
    Membrane distillation (MD) frequently deals with membrane biofouling caused by deposition of algal organic matter (AOM) from algal blooms, hampering the treatment efficiency. In this study, AOMs, which are soluble extracellular polymeric substance (sEPS), bounded EPS (bEPS), and internal organic matter (IOM) from three benthic species (Amphora coffeaeformis, Cylindrotheca fusiformis, and Navicula incerta) were exposed to a temperature range to resemble the MD process. Results showed that EPS had higher polysaccharide fraction than protein with 85.71%, 68.26%, and 71.91% for A. coffeaeformis, N. incerta, and C. fusiformis, respectively. Both the EPS polysaccharide and protein concentration linearly increase with temperature, but the opposite was true for IOM and high-molecular-weight (HMW) polysaccharide. At 80°C, 5812.94 μg/g out of 6304.28 μg/g polysaccharide in A. coffeaeformis was of low molecular weight (LMW); hence, these findings suggested that they were the major foulants to clog the narrow pores within virgin hydrophobic membrane, forming a conditioning layer followed by deposition of HMW and hydrophilic polysaccharides onto the macropores to cause irreversible fouling. Cell lysis occurring at higher temperature increases the total protein content about 25% within the EPS matrix, inducing membrane plugging via hydrophobic-hydrophobic interactions. Overall, the AOM composition at different temperatures will likely dictate the fouling severity in MD. PRACTITIONER POINTS: EPS production of three benthic diatoms was the highest at 80°C. EPS from diatoms consists of at least 75.29% of polysaccharides. Small molecular weight carbohydrates (<12 kDa) were potential foulants. Proteins of internal organic matter (>56%) give irreversible attachment towards membranes. A. coffeaeformis was considered as the most fouling diatoms with highest EPS amount of 6304.28 μg/g.
  19. Khan MM, Asghar HMA, Saulat H, Chawla M, Rafiq S, Khan MM, et al.
    Water Environ Res, 2021 Sep;93(9):1554-1561.
    PMID: 33583113 DOI: 10.1002/wer.1537
    Hazardous industrial wastes negatively impact the environment by creating issues for aquatic as well as human's life. This study investigates the treatment of hazardous industrial wastewater using cost-effective graphite adsorbent along with electrochemical regeneration integrated with renewable solar energy. The synthetic industrial effluent containing crystal violet dye was treated using an adsorbent (Nyex™ 1000) having a surface area of 1.0 m2  g-1 . The efficiency of removing solute was found to be more than 90%. The adsorbent regeneration efficiency was achieved at 99.5% by passing a charge of 100 C g-1 at current density of 10 mA cm-2 for 1 h. Solar energy was integrated with electrochemical reactor for the regeneration of adsorbent to make the system cost-effective and self-sustainable. PRACTITIONER POINTS: Industrial hazardous wastewater treatment with a cost-effective graphite integrated adsorbent. Development of renewable solar energy-integrated with electrochemical system for regeneration. Regeneration efficiency of adsorbent Nyex™ 1000 was achieved around 99.5% with integrated system. Sustainable system was introduced to incorporate with renewable energy for waste water treatment.
  20. Othman N, Noah NFM, Sulaiman RNR, Jusoh N, Tan WT
    Water Environ Res, 2021 Sep;93(9):1669-1679.
    PMID: 33704848 DOI: 10.1002/wer.1551
    Hexavalent chromium, emanating primarily from the electroplating industries, can be reduced to the less toxic trivalent variety by several methods, including emulsion liquid membrane (ELM). In this work, studies on the continuous removal of chromium from authentic electroplating wastewater by ELM are reported. The effects of treat ratio, external feed phase, and stripping agent concentration were examined. A mathematical boundary breakage model was used to study the extraction efficiency of chromium through the ELM process. The model representing the prediction of ELM extraction performance for chromium was validated through the comparison between the simulation and experimental results. The result showed the simulation model is found to be in good agreement with the experimental result. Almost 100% of 40 ppm chromium in the external feed phase was extracted within 3 to 5 min using 0.022 M TOMAC as extractant, 1.0 M acidic thiourea in the internal phase, and 1 to 5 of treat ratio. PRACTITIONER POINTS: Hexavalent chromium, emanating primarily from electroplating industries, can be reduced to the less toxic trivalent using ELM process. The developed method was tested for its applicability with predominant species of Cr2 O7 2- in real rinse electroplating wastewater. The extraction efficiency (%) of Cr (VI) was almost 100% for 40 ppm Cr in the external feed phase within 3 to 5 min. The result showed the simulation model is found to be in good agreement with the experimental result.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links