Displaying all 19 publications

Abstract:
Sort:
  1. Nosheen S, Naz T, Yang J, Hussain SA, Fazili ABA, Nazir Y, et al.
    Microb Cell Fact, 2021 Feb 27;20(1):52.
    PMID: 33639948 DOI: 10.1186/s12934-021-01545-y
    BACKGROUND: Mucor circinelloides WJ11 is a high-lipid producing strain and an excellent producer of γ-linolenic acid (GLA) which is crucial for human health. We have previously identified genes that encode for AMP-activated protein kinase (AMPK) complex in M. circinelloides which is an important regulator for lipid accumulation. Comparative transcriptional analysis between the high and low lipid-producing strains of M. circinelloides showed a direct correlation in the transcriptional level of AMPK genes with lipid metabolism. Thus, the role of Snf-β, which encodes for β subunit of AMPK complex, in lipid accumulation of the WJ11 strain was evaluated in the present study.

    RESULTS: The results showed that lipid content of cell dry weight in Snf-β knockout strain was increased by 32 % (from 19 to 25 %). However, in Snf-β overexpressing strain, lipid content of cell dry weight was decreased about 25 % (from 19 to 14.2 %) compared to the control strain. Total fatty acid analysis revealed that the expression of the Snf-β gene did not significantly affect the fatty acid composition of the strains. However, GLA content in biomass was increased from 2.5 % in control strain to 3.3 % in Snf-β knockout strain due to increased lipid accumulation and decreased to 1.83 % in Snf-β overexpressing strain. AMPK is known to inactivate acetyl-CoA carboxylase (ACC) which catalyzes the rate-limiting step in lipid synthesis. Snf-β manipulation also altered the expression level of the ACC1 gene which may indicate that Snf-β control lipid metabolism by regulating ACC1 gene.

    CONCLUSIONS: Our results suggested that Snf-β gene plays an important role in regulating lipid accumulation in M. circinelloides WJ11. Moreover, it will be interesting to evaluate the potential of other key subunits of AMPK related to lipid metabolism. Better insight can show us the way to manipulate these subunits effectively for upscaling the lipid production. Up to our knowledge, it is the first study to investigate the role of Snf-β in lipid accumulation in M. circinelloides.

    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
  2. Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, et al.
    Drug Des Devel Ther, 2023;17:1907-1932.
    PMID: 37397787 DOI: 10.2147/DDDT.S409373
    Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  3. Hong YH, Yang C, Betik AC, Lee-Young RS, McConell GK
    Am J Physiol Endocrinol Metab, 2016 05 15;310(10):E838-45.
    PMID: 27006199 DOI: 10.1152/ajpendo.00513.2015
    Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ(+/+) and nNOSμ(-/-) mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ(+/+) and nNOSμ(-/-), respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ(-/-) mice, and exercise increased NOS activity only in nNOSμ(+/+) mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg(-1)·min(-1), P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ(-/-) than in nNOSμ(+/+) mice (P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ(-/-) mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ(-/-) mice may be due to compensatory increases in AMPK activation.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
  4. Elhassan SAM, Candasamy M, Chan EWL, Bhattamisra SK
    Diabetes Metab Syndr, 2018 Nov;12(6):1109-1116.
    PMID: 29843994 DOI: 10.1016/j.dsx.2018.05.020
    BACKGROUND: Autophagy is a process devoted to degrade and recycle cellular components inside mammalian cells through lysosomal system. It plays a main function in the pathophysiology of several diseases. In type 2 diabetes, works demonstrated the dual functions of autophagy in diabetes biology. Studies had approved the role of autophagy in promoting different routes for movement of integral membrane proteins to the plasma membrane. But its role in regulation of GLUT4 trafficking has not been widely observed. In normal conditions, insulin promotes GLUT4 translocation from intracellular membrane compartments to the plasma membrane, while in type 2 diabetes defects occur in this translocation.

    METHOD: Intriguing evidences discussed the contribution of different intracellular compartments in autophagy membrane formation. Furthermore, autophagy serves to mobilise membranes within cells, thereby promoting cytoplasmic components reorganisation. The intent of this review is to focus on the possibility of autophagy to act as a carrier for GLUT4 through regulating GLUT4 endocytosis, intracellular trafficking in different compartments, and translocation to cell membrane.

    RESULTS: The common themes of autophagy and GLUT4 have been highlighted. The review discussed the overlapping of endocytosis mechanism and intracellular compartments, and has shown that autophagy and GLUT4 utilise similar proteins (SNAREs) which are used for exocytosis. On top of that, PI3K and AMPK also control both autophagy and GLUT4.

    CONCLUSION: The control of GLUT4 trafficking through autophagy could be a promising field for treating type 2 diabetes.

    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  5. Yap PG, Choi SB, Liong MT
    Appl Biochem Biotechnol, 2020 May;191(1):226-244.
    PMID: 32125649 DOI: 10.1007/s12010-020-03265-2
    This study aimed to evaluate the effect of probiotic administration on obese and ageing models. Sprague Dawley rats were subjected to high-fat diet (HFD) and injected with D-galactose to induce premature ageing. Upon 12 weeks of treatment, the faecal samples were collected and subjected to gas chromatography-mass spectrophotometry (GC-MS) analysis for metabolite detection. The sparse partial least squares discriminant analysis (sPLS-DA) showed a distinct clustering pattern of metabolite profile in the aged and obese rats administered with probiotics Lactobacillus plantarum DR7 and L. reuteri 8513d, particularly with a significantly higher concentration of allantoin. Molecular docking simulation showed that allantoin promoted the phosphorylation (activation) of adenosine monophosphate-activated kinase (AMPK) by lowering the substrate free energy of binding (FEB) and induced the formation of an additional hydrogen bond between Val184 and the substrate AMP. Allantoin also suppressed cholesterol biosynthesis by either inducing enzyme inhibition, occupying or blocking the putative binding site to result in non-spontaneous substrate binding, as in the cases of 3-hydroxy-methylglutaryl-coA reductase (HMGCR), mevalonate kinase (MVK) and lanosterol demethylase (LDM) where positive FEBs were reported. These results demonstrated the potential of allantoin to alleviate age-related hypercholesterolaemia by upregulating AMPK and downregulating cholesterol biosynthesis via the mevalonate pathway and Bloch pathway.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
  6. Ramlan H, Damanhuri HA
    Exp Gerontol, 2020 01;129:110779.
    PMID: 31705967 DOI: 10.1016/j.exger.2019.110779
    BACKGROUND: Older people are likely to develop anorexia of aging. Rostral C1 (rC1) catecholaminergic neurons in rostral ventrolateral medulla (RVLM) are recently discovered its role in food intake control. It is well established that these neurons regulate cardiovascular function.

    OBJECTIVE: This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response.

    METHOD: Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR.

    RESULTS: This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased.

    CONCLUSION: These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.

    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  7. Hor YY, Ooi CH, Khoo BY, Choi SB, Seeni A, Shamsuddin S, et al.
    J Med Food, 2019 Jan;22(1):1-13.
    PMID: 30592688 DOI: 10.1089/jmf.2018.4229
    Aging is an inevitable and ubiquitous progress that affects all living organisms. A total of 18 strains of lactic acid bacteria (LAB) were evaluated on the activation of adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor mediating lifespan extension. The cell-free supernatant (CFS) of Lactobacillus fermentum DR9 (LF-DR9), Lactobacillus paracasei OFS 0291 (LP-0291), and Lactobacillus helveticus OFS 1515 (LH-1515) showed the highest activation of AMPK and was further evaluated. The phosphorylation of AMPK by these three LAB strains was more evident in U2OS and C2C12 cells, compared to the other cell lines and control (P 
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  8. Lane SC, Camera DM, Lassiter DG, Areta JL, Bird SR, Yeo WK, et al.
    J Appl Physiol (1985), 2015 Sep 15;119(6):643-55.
    PMID: 26112242 DOI: 10.1152/japplphysiol.00857.2014
    We determined the effects of "periodized nutrition" on skeletal muscle and whole body responses to a bout of prolonged exercise the following morning. Seven cyclists completed two trials receiving isoenergetic diets differing in the timing of ingestion: they consumed either 8 g/kg body mass (BM) of carbohydrate (CHO) before undertaking an evening session of high-intensity training (HIT) and slept without eating (FASTED), or consumed 4 g/kg BM of CHO before HIT, then 4 g/kg BM of CHO before sleeping (FED). The next morning subjects completed 2 h of cycling (120SS) while overnight fasted. Muscle biopsies were taken on day 1 (D1) before and 2 h after HIT and on day 2 (D2) pre-, post-, and 4 h after 120SS. Muscle [glycogen] was higher in FED at all times post-HIT (P < 0.001). The cycling bouts increased PGC1α mRNA and PDK4 mRNA (P < 0.01) in both trials, with PDK4 mRNA being elevated to a greater extent in FASTED (P < 0.05). Resting phosphorylation of AMPK(Thr172), p38MAPK(Thr180/Tyr182), and p-ACC(Ser79) (D2) was greater in FASTED (P < 0.05). Fat oxidation during 120SS was higher in FASTED (P = 0.01), coinciding with increases in ACC(Ser79) and CPT1 as well as mRNA expression of CD36 and FABP3 (P < 0.05). Methylation on the gene promoter for COX4I1 and FABP3 increased 4 h after 120SS in both trials, whereas methylation of the PPARδ promoter increased only in FASTED. We provide evidence for shifts in DNA methylation that correspond with inverse changes in transcription for metabolically adaptive genes, although delaying postexercise feeding failed to augment markers of mitochondrial biogenesis.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  9. Lai SL, Mustafa MR, Wong PF
    Phytomedicine, 2018 Mar 15;42:144-151.
    PMID: 29655680 DOI: 10.1016/j.phymed.2018.03.027
    BACKGROUND: Targeting autophagy is emerging as a promising strategy in cancer therapeutics in recent years. Autophagy can be modulated to drive cancer cell deaths that are notoriously resistant to apoptotic-inducing drugs. In addition, autophagy has been implicated as a prosurvival mechanism in mediating cancer chemoresistance. Our previous study has demonstrated that Panduratin A (PA), a plant-derived active compound exploits ER-stress-mediated apoptosis as its cytotoxic mechanism on melanoma.

    PURPOSE: Our previous proteomics analysis revealed that treatment with PA resulted in the upregulation of an autophagy marker, LC3B in melanoma cells. Therefore, the present study sought to investigate the role of PA-induced autophagy in melanoma cells.

    METHODS: Transmission electron microscopy was performed for examination of autophagic ultra-structures in PA-treated A375 cells. Cytoplasmic LC3B and p62/SQSMT1 punctate structures were detected using immunofluorescene staining. Expression levels of LC3B II, p62/SQSMT1, ATG 12, Beclin 1, phospho S6 (ser235/236), phospho AMPK (Thr172) and cleaved PARP were evaluated by western blotting.

    RESULTS: Autophagosomes, autolysosomes and punctuates of LC3 proteins could be observed in PA-treated A375 cells. PA-induced autophagy in A375 melanoma cells was found to be mediated through the inhibition of mTOR signaling and activation of AMPK pathway. Furthermore, we showed that PA-induced apoptosis was increased in the presence of an autophagy inhibitor, signifying the cytoprotective effect of PA-induced autophagy in melanoma cells.

    CONCLUSION: Taken together, results from the present study suggest that the inhibition of autophagy by targeting mTOR and AMPK could potentiate the cytotoxicity effects of PA on melanoma cells.

    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
  10. Teoh WY, Wahab NA, Sim KS
    Nucleosides Nucleotides Nucleic Acids, 2017 Apr 03;36(4):243-255.
    PMID: 28323520 DOI: 10.1080/15257770.2016.1268693
    This study aims to investigate the mechanisms associated with the antiproliferation effect of guanosine on human colon carcinoma HCT 116 cells. In this study, guanosine induced more drastic cell cycle arrest effect than cell death effect on HCT 116 cells. The cell cycle arrest effect of guanosine on HCT 116 cells appeared to be associated with the increased activation of mitogen-activated protein kinases (MAPK) such as ERK1/2, p38 and JNK. The decrease of AMP-activated protein kinase (AMPK) activation and cyclin D1 expression was also involved. Thus, the antiproliferation of colon cancer cells of guanosine could be mediated by the disruption of MAPK and AMPK pathways.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
  11. Md Mokhtar AH, Malik IA, Abd Aziz NAA, Almabhouh FA, Durairajanayagam D, Singh HJ
    Andrologia, 2019 Apr;51(3):e13196.
    PMID: 30456785 DOI: 10.1111/and.13196
    This study examined the effects of PI3K and AMPK signalling pathway inhibitors on leptin-induced adverse effects on rat spermatozoa. Sprague-Dawley rats, aged 14-16 weeks, were randomised into control, leptin-, leptin + dorsomorphin (AMPK inhibitor)-, and leptin+LY294002 (PI3K inhibitor)-treated groups with six rats per group. Leptin was given once daily for 14 days via the intraperitoneal (i.p.) route at a dose of 60 ug kg-1 body weight. Rats in the leptin and inhibitor-treated groups received concurrently either dorsomorphin (5 mg kg-1  day-1 ) or LY294002 (1.2 mg kg-1  day-1 ) i.p. for 14 days. Controls received 0.1 ml of normal saline. Upon completion, sperm count, sperm morphology, seminiferous tubular epithelial height (STEH), seminiferous tubular diameter (STD), 8-hydroxy-2-deoxyguanosine (8-OHdG) and phospho-Akt/total Akt ratio were estimated. Data were analysed using ANOVA. Sperm count, STEH and STD were significantly lower, while the percentage of spermatozoa with abnormal morphology and the level of 8-OHdG were significantly higher in rats treated with leptin and leptin + dorsomorphin when compared to those in controls and LY294002-treated rats. Testicular phospho-Akt/total Akt ratio was significantly higher in leptin and leptin + LY294002-treated rats. In conclusion, LY294002 prevents leptin-induced changes in rat sperm parameters, suggesting the potential role of the PI3K signalling pathway in the adverse effects of leptin on sperm parameters.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  12. Chok KC, Koh RY, Ng MG, Ng PY, Chye SM
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443626 DOI: 10.3390/molecules26165038
    Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5'-adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  13. Hong YH, Frugier T, Zhang X, Murphy RM, Lynch GS, Betik AC, et al.
    J Appl Physiol (1985), 2015 May 1;118(9):1113-21.
    PMID: 25749441 DOI: 10.1152/japplphysiol.00056.2015
    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  14. Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, et al.
    Biomed Pharmacother, 2021 Dec;144:112333.
    PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333
    Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
  15. Mahmood ND, Mamat SS, Kamisan FH, Yahya F, Kamarolzaman MF, Nasir N, et al.
    Biomed Res Int, 2014;2014:695678.
    PMID: 24868543 DOI: 10.1155/2014/695678
    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n=6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P<0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  16. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, et al.
    Sci Rep, 2016 Apr 28;6:25139.
    PMID: 27122001 DOI: 10.1038/srep25139
    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p  0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
  17. Soo JS, Ng CH, Tan SH, Malik RA, Teh YC, Tan BS, et al.
    Apoptosis, 2015 Oct;20(10):1373-87.
    PMID: 26276035 DOI: 10.1007/s10495-015-1158-5
    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism
  18. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
  19. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: AMP-Activated Protein Kinases/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links