Displaying publications 1 - 20 of 125 in total

Abstract:
Sort:
  1. McGee RG, Webster AC, Lewis SR, Welsford M
    Cochrane Database Syst Rev, 2023 Jun 05;6(6):CD009688.
    PMID: 37272501 DOI: 10.1002/14651858.CD009688.pub3
    BACKGROUND: Jellyfish envenomation is common in many coastal regions and varies in severity depending upon the species. Stings cause a variety of symptoms and signs including pain, dermatological reactions, and, in some species, Irukandji syndrome (which may include abdominal/back/chest pain, tachycardia, hypertension, cardiac phenomena, and, rarely, death). Many treatments have been suggested for these symptoms, but their effectiveness is unclear. This is an update of a Cochrane Review last published in 2013.

    OBJECTIVES: To determine the benefits and harms associated with the use of any intervention, in both adults and children, for the treatment of jellyfish stings, as assessed by randomised and quasi-randomised trials.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and Web of Science up to 27 October 2022. We searched clinical trials registers and the grey literature, and conducted forward-citation searching of relevant articles.  SELECTION CRITERIA: We included randomised controlled trials (RCTs) and quasi-RCTs of any intervention given to treat stings from any species of jellyfish stings. Interventions were compared to another active intervention, placebo, or no treatment. If co-interventions were used, we included the study only if the co-intervention was used in each group.  DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane.  MAIN RESULTS: We included nine studies (six RCTs and three quasi-RCTs) involving a total of 574 participants. We found one ongoing study. Participants were either stung accidentally, or were healthy volunteers exposed to stings in a laboratory setting. Type of jellyfish could not be confirmed in beach settings and was determined by investigators using participant and local information. We categorised interventions into comparison groups: hot versus cold applications; topical applications. A third comparison of parenteral administration included no relevant outcome data: a single study (39 participants) evaluated intravenous magnesium sulfate after stings from jellyfish that cause Irukandji syndrome (Carukia). No studies assessed a fourth comparison group of pressure immobilisation bandages.  We downgraded the certainty of the evidence due to very serious risk of bias, serious and very serious imprecision, and serious inconsistency in some results.  Application of heat versus application of cold Four studies involved accidental stings treated on the beach or in hospital. Jellyfish were described as bluebottles (Physalia; location: Australia), and box jellyfish that do not cause Irukandji syndrome (Hawaiian box jellyfish (Carybdea alata) and major box jellyfish (Chironex fleckeri, location: Australia)). Treatments were applied with hot packs or hot water (showers, baths, buckets, or hoses), or ice packs or cold packs.  The evidence for all outcomes was of very low certainty, thus we are unsure whether heat compared to cold leads to at least a clinically significant reduction in pain within six hours of stings from Physalia (risk ratio (RR) 2.25, 95% confidence interval (CI) 1.42 to 3.56; 2 studies, 142 participants) or Carybdea alata and Chironex fleckeri (RR 1.66, 95% CI 0.56 to 4.94; 2 studies, 71 participants). We are unsure whether there is a difference in adverse events due to treatment (RR 0.50, 95% CI 0.05 to 5.19; 2 studies, 142 participants); these were minor adverse events reported for Physalia stings. We are also unsure whether either treatment leads to a clinically significant reduction in pain in the first hour (Physalia: RR 2.66, 95% CI 1.71 to 4.15; 1 study, 88 participants; Carybdea alata and Chironex fleckeri: RR 1.16, 95% CI 0.71 to 1.89; 1 study, 42 participants) or cessation of pain at the end of treatment (Physalia: RR 1.63, 95% CI 0.81 to 3.27; 1 study, 54 participants; Carybdea alata and Chironex fleckeri: RR 3.54, 95% CI 0.82 to 15.31; 1 study, 29 participants). Evidence for retreatment with the same intervention was only available for Physalia, with similar uncertain findings (RR 0.19, 95% CI 0.01 to 3.90; 1 study, 96 participants), as was the case for retreatment with the alternative hot or cold application after Physalia (RR 1.00, 95% CI 0.55 to 1.82; 1 study, 54 participants) and Chironex fleckeri stings (RR 0.48, 95% CI 0.02 to 11.17; 1 study, 42 participants). Evidence for dermatological signs (itchiness or rash) was available only at 24 hours for Physalia stings (RR 1.02, 95% CI 0.63 to 1.65; 2 studies, 98 participants).  Topical applications One study (62 participants) included accidental stings from Hawaiian box jellyfish (Carybdea alata) treated on the beach with fresh water, seawater, Sting Aid (a commercial product), or Adolph's (papain) meat tenderiser. In another study, healthy volunteers (97 participants) were stung with an Indonesian sea nettle (Chrysaora chinensis from Malaysia) in a laboratory setting and treated with isopropyl alcohol, ammonia, heated water, acetic acid, or sodium bicarbonate. Two other eligible studies (Carybdea alata and Physalia stings) did not measure the outcomes of this review.  The evidence for all outcomes was of very low certainty, thus we could not be certain whether or not topical applications provided at least a clinically significant reduction in pain (1 study, 62 participants with Carybdea alata stings, reported only as cessation of pain). For adverse events due to treatment, one study (Chrysaora chinensis stings) withdrew ammonia as a treatment following a first-degree burn in one participant. No studies evaluated clinically significant reduction in pain, retreatment with the same or the alternative treatment, or dermatological signs.

    AUTHORS' CONCLUSIONS: Few studies contributed data to this review, and those that did contribute varied in types of treatment, settings, and range of jellyfish species. We are unsure of the effectiveness of any of the treatments evaluated in this review given the very low certainty of all the evidence. This updated review includes two new studies (with 139 additional participants). The findings are consistent with the previous review.

    Matched MeSH terms: Acetic Acid*
  2. Low KS, Muniandy S, Naumov P, Shanmuga Sundara Raj S, Fun HK, Razak IA, et al.
    Acta Crystallogr C, 2000 Mar 15;56(Pt 3):E113-4.
    PMID: 15263222
    Bis(N,N-dimethylthiocarbamoylthio)acetic acid, [(CH(3))(2)NC(=S)S](2)CHC(=O)OH or C(8)H(14)N(2)O(2)S(4), exists as a centrosymmetric hydrogen-bonded dimer [O.O 2.661 (3) A].
    Matched MeSH terms: Acetic Acid
  3. Hafzan, Y., Saw, J.W., Fadzilah, I.
    MyJurnal
    Previous studies proved the antioxidant properties of dates. However, studies on date byproducts especially date vinegar are still lacking. Hence, it is the aim of the present study to compare the physicochemical properties, total phenolic content, and antioxidant capacity between homemade and commercial date vinegar. Physicochemical properties such as total sugar content, pH, and total titratable acidity of homemade and commercial date vinegar were studied. Both homemade and commercial date vinegar showed significant difference in physicochemical properties including pH, sugar content and total titratable acidity (p
    Matched MeSH terms: Acetic Acid
  4. Chandraseharan P, Sockalingam SNM, Shafiei Z, Zakaria ASI, Mahyuddin A, Rahman MA
    J Contemp Dent Pract, 2023 Oct 01;24(10):779-786.
    PMID: 38152911 DOI: 10.5005/jp-journals-10024-3581
    AIMS AND BACKGROUND: This study evaluates the antimicrobial activities of commercially available 5% apple cider vinegar (ACV) against Enterococcus faecalis, Streptococcus mutans, and Lactobacillus casei. Materials and methods: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were conducted using the broth microdilution method. Sodium hypochlorite (NaOCl) of 5.25% was used as a positive control, and comparisons were also made with acetic acid (AA) as the main ingredient in ACV. The three test bacteria treated with the most effective ACV dilution were visualized under a transmission electron microscope (TEM) for structural changes.

    RESULTS: Minimal inhibitory concentration was determined at 0.625% of the concentration of ACV against S. mutans and E. faecalis and 1.25% of the concentration of ACV against L. casei with two-fold serial dilutions. A concentration of 5 × 10-1% with 10-fold serial dilutions was found to be the MIC value for all three bacteria. No significant differences were found when compared with the positive control (NaOCl) (p = 0.182, p = 0.171, and p = 0.234), respectively, for two-fold serial dilutions and (p = 1.000, p = 0.658, and p = 0.110), respectively for 10-fold serial dilutions. MBC was observed to be 5% ACV for both E. faecalis and S. mutans. However, positive microbial growth was observed on the agar plate when cultured with L. casei. An independent sample t-test showed no significant differences (p > 0.05) in the antimicrobial activities between 5% ACV and 5% pure AA. TEM revealed cell wall and cytoplasmic membrane disruptions on all three bacteria at MIC value.

    CONCLUSION: Apple cider vinegar has antimicrobial activities against Enterococcus faecalis, Streptococcus mutans, and Lactobacillus casei at their respective MIC values.

    CLINICAL SIGNIFICANCE: Apple cider vinegar can be an alternative antimicrobial dental pulp disinfectant to sodium hypochlorite. Apple cider vinegar can be used safely, especially in children's dental pulp therapy and deep caries management, when adequate tooth isolation is not readily achievable. Thus, adverse reactions commonly associated with other frequently used chemical disinfectants can be avoided.

    Matched MeSH terms: Acetic Acid/pharmacology; Acetic Acid/therapeutic use
  5. Al-Hardan N, Abdullah M, Abdul Aziz A, Ahmad H
    Sains Malaysiana, 2011;40:1123-1127.
    A ZnO gas sensor was successfully prepared by RF sputtering. The maximum sensitivity of the sensor for vinegar test application was at 400oC. The ZnO based sensor showed good sensitivity for vinegar test in the concentration range of 4% to 9%. The work reveals the ability of using ZnO gas sensor to determine the acid concentrations of the vinegars for food requirements.
    Matched MeSH terms: Acetic Acid
  6. Chu J, Li S, Chen N, Wen P, Sonne C, Ma NL
    Chemosphere, 2022 Mar;291(Pt 1):132679.
    PMID: 34718007 DOI: 10.1016/j.chemosphere.2021.132679
    Poplar trees rapidly yield wood and are therefore suitable as a biofuel feedstock; however, the quality of poplar is modest, and the profitability of poplar cultivation depends on the efficiency of the harvesting process. This study offers a simple and sustainable technique to harvest lignocellulosic resources from poplar for bioethanol production. The proposed two-step pretreatment method increased the surface lignin content and decreased the surface polysaccharide content. The cellulose content increased to 54.9% and the xylan content decreased to 6.7% at 5% AC. The cellulose yield of poplar residues (Populus L.) reached 65.5% by this two-step acetic acid (AC) and sodium sulphite (SS) treatment method. Two-step pretreatment using 5% AC and 4% SS obtained a recovery of nearly 80% of the total available fermentable sugar. The surface characterization showed a higher porosity in treated samples, which improved their hydrolysability. This method decreased the amount of lignin in plant biomass, making it applicable for further wood resource recovery or waste recycling for biorefinery purposes at very low costs.
    Matched MeSH terms: Acetic Acid
  7. Sivagurunathan P, Kuppam C, Mudhoo A, Saratale GD, Kadier A, Zhen G, et al.
    Crit Rev Biotechnol, 2018 Sep;38(6):868-882.
    PMID: 29264932 DOI: 10.1080/07388551.2017.1416578
    This review provides the alternative routes towards the valorization of dark H2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.
    Matched MeSH terms: Acetic Acid
  8. Lim CSS, Chan EWC, Wong CW
    Int J Biol Macromol, 2024 Feb;259(Pt 2):129303.
    PMID: 38216018 DOI: 10.1016/j.ijbiomac.2024.129303
    Cellulose nanocrystals (CNC) conventionally involve highly concentrated sulphuric acid, which typically resulted in the formation of undesirable by-products. Although less corrosive mineral acids have been explored as alternatives, high concentrations are still required. In this study, CNC was successfully isolated from Leucaena leucocephala wood using mild sulphuric acid with acetic acid as protic solvent, and it was further studied with the addition of Lewis acids in the form of multivalent transition metal salts as co-catalyst. Selected divalent and trivalent transition metal salts including (Cr(NO3)3, Fe(NO3)3, Co(NO3)2, and Ni(NO3)2) were investigated. The morphology, chemical structure, particle size, and physicochemical properties of the CNCs were determined. Controlled depolymerization of cellulose was observed using transmission electron microscopy (TEM). Rod-like morphology for all CNCs was obtained during the hydrolysis process with the smallest CNC particles found at an average length of 278.1 ± 35.1 nm and a diameter of 13.4 ± 3.0 nm. The results showed that higher valence state metal ions resulted in better cellulose hydrolysis efficiency. In addition, the use of transition metal salt as a co-catalyst improved production efficiency and minimised carbonization of CNC while maintaining desired crystallinity and thermal properties.
    Matched MeSH terms: Acetic Acid
  9. Lee SK, Yeoh HK, Chua AS, Ngoh GC
    Water Sci Technol, 2012;66(3):620-6.
    PMID: 22744694 DOI: 10.2166/wst.2012.216
    The titrimetric method is used for on-site measurement of the concentration of volatile fatty acids (VFAs) in anaerobic treatment. In current practice, specific and interpolated pH-volume data points are used to obtain the concentration of VFA by solving simultaneous equations iteratively to convergence (denoted as SEq). Here, the least squares method (LSM) is introduced as an elegant alternative. Known concentrations of VFA (acetic acid and/or propionic acid) ranging from to 200 to 1,000 mg/L were determined using SEq and LSM. Using standard numbers of data points, SEq gave more accurate results compared with LSM. However, results favoured LSM when all data points in the range were included without any interpolation. For model refinement, unit monovalent activity coefficient (f(m) = 1) was found reasonable and arithmetic averages of dissociation constants and molecular weight of 80 mol% acetic acid were recommended in the model for VFA determination of mixtures. An accurate result was obtained with a mixture containing more VFA (butyric acid and valeric acid). In a typical VFA measurement of real anaerobic effluent, a satisfactory result with an error of 14% was achieved. LSM appears to be a promising mathematical model solver for determination of concentration of VFA in the titrimetric method. Validation of LSM in the presence of other electrolytes deserves further exploration.
    Matched MeSH terms: Acetic Acid/analysis*
  10. Murthy MB, Daya Sagar BS, Patil RL
    PMID: 12659896
    The electronic absorption spectra of eight substituted acetic acids have been measured at room temperature in several solvents. The ground state dipole moments are evaluated experimentally for these molecules. These ground state values are used in conjunction with the spectral results to evaluate their first electronically excited state dipole moments. For all the molecules investigated here the dipole moments in the excited state are higher than their ground state values.
    Matched MeSH terms: Acetic Acid/chemistry
  11. Jaziri AA, Shapawi R, Mohd Mokhtar RA, Md Noordin WN, Huda N
    PeerJ, 2022;10:e13103.
    PMID: 35310170 DOI: 10.7717/peerj.13103
    BACKGROUND: Lizardfish (Saurida tumbil Bloch, 1795) bone is a fish by-product generated during industrial surimi processing. This by-product is an important source of collagen production since the use of terrestrial animal-based collagens no longer sought due to concern regarding the transfer of infectious diseases and religious issues. Hence, this study was carried out to determine the biochemical analysis of collagens from the bone of lizardfish extracted with different acids.

    METHODS: Lizardfish bone collagens were extracted with various acids (i.e., acetic, lactic and citric acids). All extraction processes were conducted in a chiller room (4 °C). The extracted collagens were biochemically characterized, such as hydroxyproline content, Ultraviolet (UV) absorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy spectra (FTIR), Differential scanning calorimetry (DSC) and solubility in different pH values and NaCl concentrations.

    RESULTS: The yield of extracted collagens ranged between 1.73% and 2.59%, with the highest (p acid-extracted collagen (CaEC). Protein patterns confirmed that all-collagen samples had two identical subunits, α1 and α2, representing type I collagen. The highest whiteness value was found in acetic acid-extracted collagen (AaEC), but there was no significant difference (p ≥ 0.05) compared to lactic acid-extracted collagen (LaEC). UV absorption and XRD analysis reflected the characteristics of the collagen, as reported in the literature. For the FTIR, all acid-extracted collagen samples presented a triple helical structure. The thermal transition temperature (T max = 77.92-89.04 °C) was in accordance with collagen extracted from other fish species. All extracted collagens were highly soluble in acidic pH and low concentrations of NaCl (0-20 g/L). In conclusion, collagens extracted from lizardfish bone may be used as alternative sources of collagen in industrial settings, and AaEC would be considered superior in terms of the characteristics evaluated in this study.

    Matched MeSH terms: Acetic Acid/chemistry
  12. Tuan Mohamood NFA, Zainuddin N, Ahmad Ayob M, Tan SW
    Chem Cent J, 2018 Dec 06;12(1):133.
    PMID: 30523481 DOI: 10.1186/s13065-018-0500-8
    In this study, sago starch was modified in order to enhance its physicochemical properties. Carboxymethylation was used to introduce a carboxymethyl group into a starch compound. The carboxymethyl sago starch (CMSS) was used to prepare smart hydrogel by adding acetic acid into the CMSS powder as the crosslinking agent. The degree of substitution of the CMSS obtained was 0.6410. The optimization was based on the gel content and degree of swelling of the hydrogel. In this research, four parameters were studied in order to optimize the formation of CMSS-acid hydrogel. The parameters were; CMSS concentration, acetic acid concentration, reaction time and reaction temperature. From the data analyzed, 76.69% of optimum gel content was obtained with 33.77 g/g of degree of swelling. Other than that, the swelling properties of CMSS-acid hydrogel in different media such as salt solution, different pH of phosphate buffer saline solution as well as acidic and alkaline solution were also investigated. The results showed that the CMSS-acid hydrogel swelled in both alkaline and salt solution, while in acidic or low pH solution, it tended to shrink and deswell. The production of the hydrogel as a smart material offers a lot of auspicious benefits in the future especially related to swelling behaviour and properties of the hydrogel in different types of media.
    Matched MeSH terms: Acetic Acid
  13. Aznin Baharudin, Nor Akmalazura Jani, Azyati Azreen, A. A. Assyura, Hawa Pornomo, M. Hafiz Mehat
    Borneo Akademika, 2020;4(1):1-12.
    MyJurnal
    This study is focused on formulating a natural-based fabric softener using baking
    soda and vinegar with the addition of insect repellent finish of citronella oil and
    vanillin. The effectiveness of the fabric softener was evaluated by conducting a fabric
    stiffness test on both untreated and treated fabric samples with the softener
    formulated in this study. The assessment for the efficacy of insect repellence was
    carried out using 3 human participants of the same gender and build but different
    blood type, positioned at a mosquito infested area. Three tests; negative, positive, and
    normal tests were conducted to evaluate the effectiveness of the formulated mosquito
    repellent finishes in the fabric softener. The results show that the formulated fabric
    softener is good mosquito repellent and it is good at giving a soft effect on the treated
    fabric.
    Matched MeSH terms: Acetic Acid
  14. Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Rajeev Bhat
    MyJurnal
    The yield and properties of cellulose produced from bacterial fermentation of black tea broth (known as Kombucha) were investigated in this study. The tea broth was fermented naturally over a period of up to 8 days in the presence of sucrose. Tea broth with a sucrose concentration of 90 g/l produced highest yield of bacterial cellulose (66.9%). The thickness and yield of bacterial cellulose increased with fermentation time. The bacterial cellulose production increased correspondingly with increased surface area:depth ratio. Changes in pH were related to the symbiotic metabolic activities of yeasts and acetic acid bacteria, and the counts of both of these in the tea broths were relatively higher than those in the cellulose layer. Findings from this study suggest that the yield of cellulose depends on many factors that need to be optimized to achieve maximum yield.
    Matched MeSH terms: Acetic Acid
  15. Khaldun M. Al Azzam, Bahruddin, S., Noor Hasani Hashim, Afidah Abdul Rahim, Khairuddin Mohd Talib
    MyJurnal
    A simple analytical method for the determination of propionic acid and propionates in bakery products using a simple sample preparation procedure is described. The method involves the conversion of propionates to the non-ionized molecular form by adding glacial acetic acid, which is at the same time efficiently extracted into dichloromethane. After vortexing for 1 min, the extract was directly injected into a capillary gas chromatographic column with flame ionization detector. The method was applied for the determination of propionates in 112 commercial bakery samples. The levels of propionic acid plus propionates in bread, cake/ rolls, burger/hot dog buns and pita breads ranged from 197-1273, 98-1846, 546-1932 and 479-1680 µg mL -1 , respectively. No propionate was detected in any of the 36 biscuit samples analyzed.
    Matched MeSH terms: Acetic Acid
  16. Nasoha NZ, Luthfi AAI, Roslan MF, Hariz HB, Bukhari NA, Manaf SFA
    Sci Rep, 2023 Nov 07;13(1):19284.
    PMID: 37935748 DOI: 10.1038/s41598-023-46061-8
    This study explores utilizing pineapple peel (PP) hydrolysate as a promising carbon source for xylitol production, covering scopes from the pre-treatment to the fermentation process. The highest xylose concentration achieved was around 20 g/L via mild acid hydrolysis (5% nitric acid, 105 °C, 20-min residence time) with a solid loading of 10%. Two sets fermentability experiments were carried out of varying pH levels in synthetic media that includes acetic acid as the main inhibitors and hydrolysate supplemented with diverse nitrogen source. The results revealed that pH 7 exhibited the highest xylitol production, yielding 0.35 g/g. Furthermore, urea was found to be a highly promising and cost-effective substitute for yeast extract, as it yielded a comparable xylitol production of 0.31 g/g with marginal difference of only 0.01 g/g compared to yeast extract further highlights the viability of urea as the preferred option for reducing xylitol production cost. The absence of a significant difference between the synthetic media and hydrolysate, with only a marginal variance of 0.35 to 0.32 g/g, implies that acetic acid is indeed the primary constraint in xylitol production using PP hydrolysate. The study sheds light on PP biomass's potential for xylitol production, aligning economic benefits with environmental sustainability and waste management.
    Matched MeSH terms: Acetic Acid
  17. Zakaria ZA, Mat Jais AM, Goh YM, Sulaiman MR, Somchit MN
    Clin Exp Pharmacol Physiol, 2007 Mar;34(3):198-204.
    PMID: 17250639
    1. The present study was performed in order to determine the amino acid and fatty acid composition of an aqueous extract of the freshwater fish Channa striatus, obtained by soaking (1:2, w/v) fresh fillets overnight in a chloroform:methanol (2:1, v/v) solvent, to elucidate the mechanism responsible for its antinociceptive activity and to clarify the relationship between the presence of the amino and fatty acids and the expected activity. 2. The aqueous extract was found to contain all amino acids with the major amino acids glycine, alanine, lysine, aspartic acid and proline making up 35.77 +/- 0.58, 10.19 +/- 1.27, 9.44 +/- 0.56, 8.53 +/- 1.15 and 6.86 +/- 0.78% of the total protein, respectively. 3. In addition, the aqueous extract was found to have a high palmitic acid (C16:0) content, which contributed approximately 35.93 +/- 0.63% to total fatty acids. The other major fatty acids in the aqueous extract were oleic acid (C18:1), stearic acid (C18:0), linoleic acid (C18:2) and arachidonic acid (C20:4), contributing 22.96 +/- 0.40, 15.31 +/- 0.33, 11.45 +/- 0.31 and 7.44 +/- 0.83% of total fatty acids, respectively. 4. Furthermore, the aqueous extract was demonstrated to possess concentration-dependent antinociceptive activity, as expected, when assessed using the abdominal constriction test in mice. 5. It is concluded that the aqueous extract of C. striatus contains all the important amino acids, but only some of the important fatty acids, which are suggested to play a key role in the observed antinociceptive activity of the extract, as well as in the traditionally claimed wound healing properties of the extract.
    Matched MeSH terms: Acetic Acid/antagonists & inhibitors; Acetic Acid/toxicity
  18. Peh KK, Tan YT
    Int J Pharm Compd, 2000 May-Jun;4(3):229-31.
    PMID: 23986007
    A simple and selective high-performance liquid chromatography (HPLC) method using ultraviolet detection was developed for simultaneous determination of fusidic acid and betamethasone dipropionate in a cream formulation. A Supelcosil LC18 column was used for chromatographic separation. The mobile phase consisted of acetonitrile and 0.01 M disodium hydrogen orthophosphate (70:30, % v/v) adjusted to pH 6 with glacial acetic acid. Analysis was run at a flow rate of 1.0 mL/minute with the detector operating at 235 nm. The standard calibration curve was linear over a concentration range of 0.3 to 1.2 mg/mL for fusidic acid and 9.6 to 38.4 micrograms/mL for betamethasone dipropionate. The average recovery values for fusidic acid and betamethasone dipropionate were almost 100%. The within-run and between-run coefficient of variation and percent error values for the two drugs were all less than 2% and +/- 3%, respectively.
    Matched MeSH terms: Acetic Acid
  19. Nda-Umar UI, Ramli I, Muhamad EN, Azri N, Taufiq-Yap YH
    Molecules, 2020 Nov 10;25(22).
    PMID: 33182532 DOI: 10.3390/molecules25225221
    In this study, an optimized mesoporous sulfonated carbon (OMSC) catalyst derived from palm kernel shell biomass was developed using template carbonization and subsequent sulfonation under different temperatures and time conditions. The OMSC catalyst was characterized using acid-base titration, elemental analysis, XRD, Raman, FTIR, XPS, TPD-NH3, TGA-DTA, SEM, and N2 adsorption-desorption analysis to reveal its properties. Results proved that the OMSC catalyst is mesoporous and amorphous in structure with improved textural, acidic, and thermal properties. Both FTIR and XPS confirmed the presence of -SO3H, -OH, and -COOH functional groups on the surface of the catalyst. The OMSC catalyst was found to be efficient in catalyzing glycerol conversion to acetin via an acetylation reaction with acetic acid within a short period of 3 h. Response surface methodology (RSM), based on a two-level, three-factor, face-centered central composite design, was used to optimize the reaction conditions. The results showed that the optimized temperature, glycerol-to-acetic acid mole ratio, and catalyst load were 126 °C, 1:10.4, and 0.45 g, respectively. Under these optimum conditions, 97% glycerol conversion (GC) and selectivities of 4.9, 27.8, and 66.5% monoacetin (MA), diacetin (DA), and triacetin (TA), respectively, were achieved and found to be close to the predicted values. Statistical analysis showed that the regression model, as well as the model terms, were significant with the predicted R2 in reasonable agreement with the adjusted R2 (<0.2). The OMSC catalyst maintained excellent performance in GC for the five reaction cycles. The selectivity to TA, the most valuable product, was not stable until the fourth cycle, attributable to the leaching of the acid sites.
    Matched MeSH terms: Acetic Acid
  20. Amin MM, Taheri E, Bina B, van Ginkel SW, Ghasemian M, Puad NIM, et al.
    J Environ Manage, 2019 Nov 15;250:109461.
    PMID: 31499462 DOI: 10.1016/j.jenvman.2019.109461
    Mixed culture sludge has been widely used as a microbial consortium for biohydrogen production. Simple thermal treatment of sludge is usually required in order to eliminate any H2-consuming bacteria that would reduce H2 production. In this study, thermal treatment of sludge was carried out at various temperatures. Electron flow model was then applied in order to assess community structure in the sludge upon thermal treatment for biohydrogen production. Results show that the dominant electron sink was acetate (150-217 e- meq/mol glucose). The electron equivalent (e- eq) balances were within 0.8-18% for all experiments. Treatment at 100 °C attained the highest H2 yield of 3.44 mol H2/mol glucose from the stoichiometric reaction. As the treatment temperature increased from 80 to 100 °C, the computed acetyl-CoA and reduced form of ferredoxin (Fdred) concentrations increased from 13.01 to 17.34 e- eq (1.63-2.17 mol) and 1.34 to 4.18 e- eq (0.67-2.09 mol), respectively. The NADH2 balance error varied from 3 to 10% and the term e-(Fd↔NADH2) (m) in the NADH2 balance was NADH2 consumption (m = -1). The H2 production was mainly via the Fd:hydrogenase system and this is supported with a good NADH2 balance. Using the modified Gompertz model, the highest maximum H2 production potential was 1194 mL whereas the maximum rate of H2 production was 357 mL/h recorded at 100 °C of treatment.
    Matched MeSH terms: Acetic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links