Displaying publications 1 - 20 of 349 in total

Abstract:
Sort:
  1. Lim CSS, Chan EWC, Wong CW
    Int J Biol Macromol, 2024 Feb;259(Pt 2):129303.
    PMID: 38216018 DOI: 10.1016/j.ijbiomac.2024.129303
    Cellulose nanocrystals (CNC) conventionally involve highly concentrated sulphuric acid, which typically resulted in the formation of undesirable by-products. Although less corrosive mineral acids have been explored as alternatives, high concentrations are still required. In this study, CNC was successfully isolated from Leucaena leucocephala wood using mild sulphuric acid with acetic acid as protic solvent, and it was further studied with the addition of Lewis acids in the form of multivalent transition metal salts as co-catalyst. Selected divalent and trivalent transition metal salts including (Cr(NO3)3, Fe(NO3)3, Co(NO3)2, and Ni(NO3)2) were investigated. The morphology, chemical structure, particle size, and physicochemical properties of the CNCs were determined. Controlled depolymerization of cellulose was observed using transmission electron microscopy (TEM). Rod-like morphology for all CNCs was obtained during the hydrolysis process with the smallest CNC particles found at an average length of 278.1 ± 35.1 nm and a diameter of 13.4 ± 3.0 nm. The results showed that higher valence state metal ions resulted in better cellulose hydrolysis efficiency. In addition, the use of transition metal salt as a co-catalyst improved production efficiency and minimised carbonization of CNC while maintaining desired crystallinity and thermal properties.
    Matched MeSH terms: Sulfuric Acids/chemistry
  2. Loi E, Ng RW, Chang MM, Fong JF, Ng YH, Ng SM
    Luminescence, 2017 Feb;32(1):114-118.
    PMID: 27166514 DOI: 10.1002/bio.3157
    Carbon dots, a new class of nanomaterial with unique optical property and have great potential in various applications. This work demonstrated the possibility of tuning the emission wavelength of carbon dots by simply changing the acid type used during synthesis. In particular, sulfuric and phosphoric acids and a mixture of the two were used to carbonize the same starting precursor, sucrose. This resulted in the isolation of carbon dots with blue (440 nm) and green (515 nm) emission. Interestingly, the use of an acid mixture at various ratios did not shift the initial emission profile, but did obviously alter the fluorescence efficiency of the peaks. This clearly showed that acid type can be used as an alternative tool to produce carbon dots that have different emissions using the same starting precursor. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Phosphoric Acids/chemistry*; Sulfuric Acids/chemistry*
  3. Hayyan A, Mjalli FS, Hashim MA, Hayyan M, AlNashef IM, Al-Zahrani SM, et al.
    Bioresour Technol, 2011 Oct;102(20):9564-70.
    PMID: 21855329 DOI: 10.1016/j.biortech.2011.07.074
    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751).
    Matched MeSH terms: Acids/chemistry*; Fatty Acids/chemistry
  4. Sim YL, Ariffin A, Khan MN
    Bioorg Chem, 2008 Aug;36(4):178-82.
    PMID: 18440044 DOI: 10.1016/j.bioorg.2008.03.003
    The rate of conversion of 1 to N-(2-methoxyphenyl)phthalimide (2) within [HCl] range 5.0x10(-3)-1.0 M at 1.0M ionic strength (by NaCl) reveals the presence of both uncatalyzed and specific acid-catalyzed kinetic terms in the rate law. Intramolecular carboxamide group-assisted cleavage of amide bond of 1 reveals rate enhancement of much larger than 10(6)-fold compared to the expected rate of analogous intermolecular reaction.
    Matched MeSH terms: Acids/chemistry*; Phthalic Acids/chemistry*
  5. Salimon J, Omar TA, Salih N
    ScientificWorldJournal, 2014;2014:906407.
    PMID: 24719581 DOI: 10.1155/2014/906407
    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.
    Matched MeSH terms: Fatty Acids/chemistry*; Trans Fatty Acids/chemistry*
  6. Rafiqul IS, Sakinah AM, Karim MR
    Appl Biochem Biotechnol, 2014 Sep;174(2):542-55.
    PMID: 25082763 DOI: 10.1007/s12010-014-1059-z
    Xylitol production by bioconversion of xylose can be economically interesting if the raw material can be recovered from a cheap lignocellulosic biomass (LCB). Meranti wood sawdust (MWS) is a renewable and low-cost LCB that can be used as a promising and economic source of xylose, a starting raw material for the manufacture of several specialty chemicals, especially xylitol. This study aimed to optimize the hydrolysis process of MWS and to determine the influence of temperature, H2SO4 concentration, and residence time on xylose release and on by-product formation (glucose, arabinose, acetic acid, furfural, hydroxymethylfurfural (HMF), and lignin degradation products (LDPs)). Batch hydrolysis was conducted under various operating conditions, and response surface methodology was adopted to achieve the highest xylose yield. Xylose production was highly affected by temperature, acid concentration, and residence time. The optimum temperature, acid concentration, and time were determined to be 124 °C, 3.26 %, and 80 min, respectively. Under these optimum conditions, xylose yield and selectivity were attained at 90.6 % and 4.05 g/g, respectively.
    Matched MeSH terms: Sulfuric Acids/chemistry*
  7. Harun MY, Dayang Radiah AB, Zainal Abidin Z, Yunus R
    Bioresour Technol, 2011 Apr;102(8):5193-9.
    PMID: 21333529 DOI: 10.1016/j.biortech.2011.02.001
    Effects of different physical pretreatments on water hyacinth for dilute acid hydrolysis process (121 ± 3 °C, 5% H(2)SO(4), 60 min) were comparatively investigated. Untreated sample had produced 24.69 mg sugar/g dry matter. Steaming (121 ± 3 °C) and boiling (100 ± 3 °C) for 30 min had provided 35.9% and 52.4% higher sugar yield than untreated sample, respectively. The highest sugar yield (132.96 mg sugar/g dry matter) in ultrasonication was obtained at 20 min irradiation using 100% power. The highest sugar production (155.13 mg sugar/g dry matter) was obtained from pulverized samples. Hydrolysis time was reduced when using samples pretreated by drying, mechanical comminution and ultrasonication. In most methods, prolonging the pretreatment period was ineffective and led to sugar degradations. Morphology inspection and thermal analysis had provided evidences of structure disruption that led to higher sugar recovery in hydrolysis process.
    Matched MeSH terms: Acids/chemistry*
  8. Gew LT, Misran M
    J Biol Phys, 2017 Sep;43(3):397-414.
    PMID: 28752254 DOI: 10.1007/s10867-017-9459-2
    In this study, we address the effect of the cis-double bond in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamide-N-[methoxy(polyethylene glycol)-2000, DOPE PEG2000 (DP), on the Langmuir monolayer of C18 fatty acids-namely, stearic acid (SA), oleic acid (L1), linoleic acid (L2), and linolenic acid (L3)-with the same head group but different degrees of saturation on their hydrocarbon chains. Negative values of Gibbs free energy of mixing (ΔG mix) were obtained throughout the investigated ranges of the unsaturated C18 fatty-acid (L1, L2 and L3) mixed systems, indicating that very strong attractions occurred between molecules in the monolayers. The bend and kink effects from the cis-double bond(s) in the hydrocarbon chain affected the membrane fluidity and molecular packing in the monolayers, which resulted in a greater interaction between unsaturated C18 fatty acids and DP. The most thermodynamically stable mole composition of unsaturated C18 fatty acids to DP was observed at 50:1; this ratio is suggested to be the best mole ratio and will be subsequently used to prepare DP-C18 fatty-acid nanoliposomes. The presence of cis-double bonds in both hydrocarbon chains of DOPE in DP also created an imperfection in the membrane structure of lipid-drug delivery systems, which is expected to enhance lipid-based systems for antibody conjugation and drug encapsulation.
    Matched MeSH terms: Fatty Acids/chemistry*
  9. Ai H, Lee YY, Xie X, Tan CP, Ming Lai O, Li A, et al.
    Food Chem, 2023 Jun 30;412:135558.
    PMID: 36716631 DOI: 10.1016/j.foodchem.2023.135558
    Palm olein (POL) was modified by enzymatic interesterification with different degrees of acyl migration in a solvent-free packed bed reactor. The fatty acid and acylglycerol composition, isomer content, thermodynamic behavior, and relationship between crystal polymorphism, solid fat content (SFC), crystal microstructure, and texture before and after modification were studied. We found that the increase in sn-2 saturation interesterification was not only due to the generated tripalmitin (PPP) but also caused by acyl migration, and the SFC profiles were changed accordingly. The emergence of high melting point acylglycerols was an important factor accelerating the crystallization rate, further shortening the crystallization induction time, leading to the formation of large crystal spherulites, thereby reducing the hardness. The transformation from the β' to the β form occurred during post-hardening during storage. The isomer content also affected the physicochemical properties of the modified POL.
    Matched MeSH terms: Fatty Acids/chemistry
  10. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2023 Jun 15;240:124526.
    PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526
    Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the dynamics, mechanisms, and unique features of the enzymes. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
    Matched MeSH terms: Carboxylic Acids/chemistry
  11. Nasri C, Halabi Y, Hajib A, Choukri H, Harhar H, Lee LH, et al.
    Sci Rep, 2023 Dec 20;13(1):22767.
    PMID: 38123687 DOI: 10.1038/s41598-023-50119-y
    Eight Moroccan avocado varieties were analyzed for their nutritional composition and physicochemical properties. The nutritional contents of the sample were determined through the evaluation of the moisture, oil, ash, protein, and carbohydrate contents, and energy value calculation. Additionally, macroelements (Ca, Mg, and Na) and microelements (Fe, Zn, Cu, and Mn) were determined in the mineral profile. Oils were examined also for their fatty acid, phytosterol, and tocopherol profiles. As a result of the study, the avocado presents significant differences between the eight studied varieties (p 
    Matched MeSH terms: Fatty Acids/chemistry
  12. Shaik MI, Kadir ANA, Sarbon NM
    J Food Sci, 2024 Jan;89(1):320-329.
    PMID: 38051010 DOI: 10.1111/1750-3841.16858
    The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.
    Matched MeSH terms: Acids/chemistry
  13. Nehdi IA, Sbihi HM, Tan CP, Rashid U, Al-Resayes SI
    J Food Sci, 2018 Mar;83(3):624-630.
    PMID: 29377104 DOI: 10.1111/1750-3841.14033
    This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein.

    PRACTICAL APPLICATION: This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia.

    Matched MeSH terms: Fatty Acids/chemistry; Lauric Acids/chemistry; Stearic Acids/chemistry
  14. Hosseini S, Ibrahim F, Djordjevic I, Koole LH
    Analyst, 2014 Jun 21;139(12):2933-43.
    PMID: 24769607 DOI: 10.1039/c3an01789c
    Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.
    Matched MeSH terms: Polymethacrylic Acids/chemistry*
  15. Ahmad Tarmizi AH, Niranjan K, Gordon M
    Food Chem, 2013 Jan 15;136(2):902-8.
    PMID: 23122143 DOI: 10.1016/j.foodchem.2012.08.001
    The aim of this study was to investigate the effect of atmospheric frying followed by drainage under vacuum on the stability of oil, compared to similar frying with drainage at atmospheric pressure. Changes in the oil were assessed by the free fatty acid (FFA) content, p-anisidine value (AnV), colour, viscosity, fatty acid profile and concentration of tocols. The rate of FFA formation in the case of vacuum drainage was found to be about half that of atmospheric drainage. Oil deterioration by oxidation and polymerisation was also reduced by the use of vacuum drainage. The AnV of the oil after vacuum drainage was lower by about 12%, the total colour difference was improved by 14% and viscosity was slightly reduced after 5 days of frying, compared to the values for oil that had been drained at atmospheric pressure. There was a reduction in the loss of polyunsaturated fatty acids in the case of vacuum drainage after 5 days of frying but differences in retention of tocols were only evident in the first two days of frying.
    Matched MeSH terms: Fatty Acids/chemistry
  16. Khayoon MS, Olutoye MA, Hameed BH
    Bioresour Technol, 2012 May;111:175-9.
    PMID: 22405756 DOI: 10.1016/j.biortech.2012.01.177
    Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock.
    Matched MeSH terms: Fatty Acids/chemistry
  17. Lee CBTL, Wu TY, Ting CH, Tan JK, Siow LF, Cheng CK, et al.
    Bioresour Technol, 2019 Apr;278:486-489.
    PMID: 30711220 DOI: 10.1016/j.biortech.2018.12.034
    The performances of various anhydrous and aqueous choline chloride-dicarboxylic acid based deep eutectic solvents (DESs) were evaluated for furfural production from oil palm fronds without any additional catalyst. The effects of different carbon chain length dicarboxylic acids and water content in each DES on furfural production were investigated. Oil palm fronds, DES and water (0-5 ml) were mixed and reacted in an oil bath (60-300 min). Reacted oil palm fronds had the potential to be reused as cellulose-rich-valuable by-products. At 100 °C, aqueous choline chloride-oxalic acid (16.4 wt% H2O) produced the highest furfural yield of 26.34% and cellulose composition up to 72.79% in the reacted oil palm fronds. Despite operating at suitable reaction duration for dicarboxylic acid with longer carbon chain length, aqueous choline chloride-malonic acid and aqueous choline chloride-succinic acid performed poorly with furfural yield of less than 1%.
    Matched MeSH terms: Carboxylic Acids/chemistry*
  18. Ng YJ, Tham PE, Khoo KS, Cheng CK, Chew KW, Show PL
    Bioprocess Biosyst Eng, 2021 Sep;44(9):1807-1818.
    PMID: 34009462 DOI: 10.1007/s00449-021-02577-9
    Virgin coconut oil is a useful substance in our daily life. It contains a high percentage of lauric acid which has many health benefits. The current industry has developed several methods to extract the oil out from the coconut fruit. This review paper aims to highlight several common extraction processes used in modern industries that includes cold extraction, hot extraction, low-pressure extraction, chilling, freezing and thawing method, fermentation, centrifugation, enzymatic extraction and supercritical fluid carbon dioxide. Different extraction methods will produce coconut oil with different yields and purities of lauric acid, thus having different uses and applications. Challenges that are faced by the industries in extracting the coconut oil using different methods of extraction are important to be explored so that advancement in the oil extraction technology can be done for efficient downstream processing. This study is vital as it provides insights that could enhance the production of coconut oil.
    Matched MeSH terms: Lauric Acids/chemistry*
  19. Mandal BH, Rahman ML, Yusoff MM, Chong KF, Sarkar SM
    Carbohydr Polym, 2017 Jan 20;156:175-181.
    PMID: 27842811 DOI: 10.1016/j.carbpol.2016.09.021
    Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h-1) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity.
    Matched MeSH terms: Hydroxamic Acids/chemistry*
  20. Razia S, Hadibarata T, Lau SY
    Bioprocess Biosyst Eng, 2023 Mar;46(3):341-358.
    PMID: 36602611 DOI: 10.1007/s00449-022-02844-3
    Acidophiles are a group of microorganisms that thrive in acidic environments where pH level is far below the neutral value 7.0. They belong to a larger family called extremophiles, which is a group that thrives in various extreme environmental conditions which are normally inhospitable to other organisms. Several human activities such as mining, construction and other industrial processes release highly acidic effluents and wastes into the environment. Those acidic wastes and wastewaters contain different types of pollutants such as heavy metals, radioactive, and organic, whose have adverse effects on human being as well as on other living organisms. To protect the whole ecosystem, those pollutants containing effluents or wastes must be clean properly before releasing into environment. Physicochemical cleanup processes under extremely acidic conditions are not always successful due to high cost and release of toxic byproducts. While in case of biological methods, except acidophiles, no other microorganisms cannot survive in highly acidic conditions. Therefore, acidophiles can be a good choice for remediation of different types of contaminants present in acidic conditions. In this review article, various roles of acidophilic microorganisms responsible for removing heavy metals and radioactive pollutants from acidic environments were discussed. Bioremediation of various acidic organic pollutants by using acidophiles was also studied. Overall, this review could be helpful to extend our knowledge as well as to do further relevant novel studies in the field of acidic pollutants remediation by applying acidophilic microorganisms.
    Matched MeSH terms: Acids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links