Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Tan D, Mohamad NA, Wong YH, Yeong CH, Cheah PL, Sulaiman N, et al.
    Int J Hyperthermia, 2019;36(1):554-561.
    PMID: 31132888 DOI: 10.1080/02656736.2019.1610800
    Purpose: This study aimed to evaluate the effects of various computed tomography (CT) acquisition parameters and metal artifacts on CT number measurement for CT thermometry during CT-guided thermal ablation. Methods: The effects of tube voltage (100-140 kVp), tube current (20-250 mAs), pitch (0.6-1.5) and gantry rotation time (0.5, 1.0 s) as well as metal artifacts from a radiofrequency ablation (RFA) needle on CT number were evaluated using liver tissue equivalent polyacrylamide (PAA) phantom. The correlation between CT number and temperature from 37 to 80 °C was studied on PAA phantom using optimum CT acquisition parameters. Results: No statistical significant difference (p > 0.05) was found on CT numbers under the variation of different acquisition parameters for the same temperature setting. On the other hand, the RFA needle has induced metal artifacts on the CT images of up to 8 mm. The CT numbers decreased linearly when the phantom temperature increased from 37 to 80 °C. A linear regression analysis on the CT numbers and temperature suggested that the CT thermal sensitivity was -0.521 ± 0.061 HU/°C (R2 = 0.998). Conclusion: CT thermometry is feasible for temperature assessment during RFA with the current CT technology, which produced a high CT number reproducibility and stable measurement at different CT acquisition parameters. Despite being affected by metal artifacts, the CT-based thermometry could be further developed as a tissue temperature monitoring tool during CT-guided thermal ablation.
    Matched MeSH terms: Acrylic Resins/chemistry*
  2. Tan CY, Rahman RN, Kadir HA, Tayyab S
    Acta Biochim. Pol., 2011;58(3):405-12.
    PMID: 21887412
    Bacillus licheniformis α-amylase (BLA) was chemically modified using 100-fold molar excess of succinic anhydride over protein or 0.66 M potassium cyanate to obtain 42 % succinylated and 81 % carbamylated BLAs. Size and charge homogeneity of modified preparations was established by Sephacryl S-200 HR gel chromatography and polyacrylamide gel electrophoresis. Conformational alteration in these preparations was evident by the larger Stokes radii (3.40 nm for carbamylated and 3.34 nm for succinylated BLAs) compared to 2.43 nm obtained for native BLA. Urea denaturation results using mean residue ellipticity (MRE) as a probe also showed conformational destabilization based on the early start of transition as well as ΔG(D)(H(2)O) values obtained for both modified derivatives and Ca-depleted BLA. Decrease in ΔG(D)(H(2)O) value from 5,930 cal/mol (for native BLA) to 3,957 cal/mol (for succinylated BLA), 3,336 cal/mol (for carbamylated BLA) and 3,430 cal/mol for Ca-depleted BLA suggested reduced conformational stability upon modification of amino groups of BLA or depletion of calcium. Since both succinylation and carbamylation reactions abolish the positive charge on amino groups (both α- and ε- amino), the decrease in conformational stability can be ascribed to the disruption of salt bridges present in the protein which might have released the intrinsic calcium from its binding site.
    Matched MeSH terms: Acrylic Resins/chemistry
  3. Sim LH, Gan SN, Chan CH, Yahya R
    Spectrochim Acta A Mol Biomol Spectrosc, 2010 Aug;76(3-4):287-92.
    PMID: 20444642 DOI: 10.1016/j.saa.2009.09.031
    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO(4)) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO(4) were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO(4) blends reveal that Li(+) ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the nu(C-O-C) and omega(CH(2)) of PEO confirm the coordination between PEO and Li(+) ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li(+)-PAc complexes suggests that LiClO(4) does not enhance the compatibility of PAc/PEO blend.
    Matched MeSH terms: Acrylic Resins/chemistry*
  4. Wong SS, Teng TT, Ahmad AL, Zuhairi A, Najafpour G
    J Hazard Mater, 2006 Jul 31;135(1-3):378-88.
    PMID: 16431022
    The flocculation performances of nine cationic and anionic polyacrylamides with different molecular weights and different charge densities in the treatment of pulp and paper mill wastewater have been studied. The experiments were carried out in jar tests with the polyacrylamide dosages range of 0.5-15 mg l(-1), rapid mixing at 200 rpm for 2 min, followed by slow mixing at 40 rpm for 15 min and settling time of 30 min. The effectiveness of the polyacrylamides was measured based on the reduction of turbidity, the removal of total suspended solids (TSS) and the reduction of chemical oxygen demand (COD). Cationic polyacrlyamide Organopol 5415 with very high molecular weight and low charge density is found to give the highest flocculation efficiency in the treatment of the paper mill wastewater. It can achieve 95% of turbidity reduction, 98% of TSS removal, 93% of COD reduction and sludge volume index (SVI) of 14 ml g(-1) at the optimum dosage of 5 mg l(-1). SVI values of less than 70 m lg(-1) are found for all polyacrylamide at their respective optimum dosage. Based on the cost evaluation, the use of the polyacrylamides is economically feasible to treat the pulp and paper mill wastewaters. This result suggests that single-polymer system can be used alone in the coagulation-flocculation process due to the efficiency of the polyacrylamide. Sedimentation of the sludge by gravity thickening with settling time of 30 min is possible based on the settling characteristics of the sludge produced by Organopol 5415 that can achieve 91% water recovery and 99% TSS removal after 30 min settling.
    Matched MeSH terms: Acrylic Resins/chemistry*
  5. Mazlan NF, Tan LL, Karim NHA, Heng LY, Jamaluddin ND, Yusof NYM, et al.
    Talanta, 2019 Jun 01;198:358-370.
    PMID: 30876573 DOI: 10.1016/j.talanta.2019.02.036
    An optical genosensor based on Schiff base complex (Zn2+ salphen) DNA label and acrylic microspheres (AMs) as polymer support of the capturing DNA probe (cpDNA) was developed for dengue virus serotype 2 (DEN-2) detection via reflectance spectrophotometric method. The solid-state optical DNA biosensor showed high selectivity and specificity up to one-base mismatch in the target DNA sequence owing to the salphen chemical structure that is rich in localized electrons, and allowed π-π stacking interaction between stacked base pairs of double-stranded DNA (dsDNA). The reflectometric DNA microsensor demonstrated a broad linear detection range towards DEN-2 DNA from 1 × 10-15 M to 1 × 10-3 M with a low limit of detection (LOD) obtained at 1.21 × 10-16 M. The DNA biosensor gave reproducible optical response with a satisfactory relative standard deviation (RSD) at 3.1%, (n = 3), and the reflectance response was stable even after four regeneration cycles of the DNA biosensor. The optical genosensor was proven comparable with standard reverse transcription polymerase chain reaction (RT-PCR) in detecting DEN-2 genome acquired from clinical samples of serum, urine and saliva of dengue virus infected patients under informed consent. The developed reflectometric DNA biosensor is advantageous in offering an early DEN-2 diagnosis, when fever symptom started to manifest in patient.
    Matched MeSH terms: Acrylic Resins/chemistry*
  6. Irani M, Ismail H, Ahmad Z, Fan M
    J Environ Sci (China), 2015 Jan 1;27:9-20.
    PMID: 25597658 DOI: 10.1016/j.jes.2014.05.049
    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent.
    Matched MeSH terms: Acrylic Resins/chemistry*
  7. Ahmad F, Dent M, Yunus N
    J Prosthodont, 2009 Oct;18(7):596-602.
    PMID: 19515166 DOI: 10.1111/j.1532-849X.2009.00481.x
    This study evaluated the shear bond strengths of light-polymerized urethane dimethacrylate (Eclipse) and heat-polymerized polymethylmethacrylate (Meliodent) denture base polymers to intraoral and laboratory-processed reline materials.
    Matched MeSH terms: Acrylic Resins/chemistry
  8. Yunus N, Rashid AA, Azmi LL, Abu-Hassan MI
    J Oral Rehabil, 2005 Jan;32(1):65-71.
    PMID: 15634304
    Nylon denture base material could be a useful alternative to poly (methyl methacrylate) (PMMA) in special circumstances such as patient allergy to the monomer. The aim of this study was to evaluate the flexural properties of a nylon denture base material (Lucitone FRS), a conventional compression-moulded heat-polymerized (Meliodent), a compression-moulded microwave-polymerized (Acron MC) and an injection-moulded microwave-polymerized (Lucitone 199) PMMA polymers. The effect of aldehyde-free, oxygen releasing disinfectant solution (Perform) on these properties was also investigated. The flexural modulus and the flexural strength were assessed with a three-point bending test. Specimens were stored in water at a temperature of 37 degrees C for 30 days. For each material, half of the prepared specimens were randomly selected and immersed in the disinfectant 24 h prior to testing. Results were compared statistically at a confidence level of 95%. The result showed that in both the control and disinfected groups, the flexural modulus of nylon was significantly lower than the three PMMA polymers. The flexural strength of nylon was significantly lower than those of Meliodent and Acron MC but was comparable with Lucitone 199. A 24-h immersion in the disinfecting solution increased the rigidity of nylon denture base material.
    Matched MeSH terms: Acrylic Resins/chemistry*
  9. Jamaluddin A, Pearson GJ
    Asian J Aesthet Dent, 1993 Jan;1(1):19-23.
    PMID: 8149147
    This study assessed the nature of the adhesion in repaired glass-ionomer restorative materials. Two chemically different glass-ionomer cements, Ketac Fil and Chemfil II Cap, and three different methods of conditioning the surface for repair were employed. Specimens of each material were prepared and the cut surfaces were then treated with either 35% phosphoric acid, 35% polyacrylic acid or a combination of phosphoric acid followed by polyacrylic acid. Freshly mixed material was injected against these treated surfaces and allowed to set under simulated intraoral conditions. The specimens were tested to failure in flexion after seven days storage. Assessment of the fractured surfaces was then carried out using the scanning electron microscope. The results showed the occurrence of both adhesive and cohesive failure.
    Matched MeSH terms: Acrylic Resins/chemistry
  10. Abdullah MF, Azfaralariff A, Lazim AM
    J Biomater Sci Polym Ed, 2018 10;29(14):1745-1763.
    PMID: 29989528 DOI: 10.1080/09205063.2018.1489023
    This research aims to compare the ability of smart hydrogel in removing the methylene blue prepared by using two different radiation methods. The extracted pectin from the dragon fruit peel (Hylocereus polyrhizus) was used with acrylic acid (AA) to produce a polymerized hydrogel through gamma and microwave radiation. The optimum hydrogel swelling capacity was obtained by varying the dose of radiation, pectin to AA ratio and pH used. From the array of samples, the ideal hydrogel was obtained at pH 8 with a ratio of 2:3 (pectin: AA) using 10 kGy and 400 W radiated gamma and microwave respectively. The performance of both hydrogels namely as Pc/AA(G) (gamma) and Pc/AA(Mw) (microwave) were investigated using methylene blue (MB) adsorption studies. In this study, three variables were manipulated, pH and MB concentration and hydrogel mass in order to find the optimum condition for the adsorption. Results showed that 20 mg of Pc/AA(G) performed the highest MB removal which was about 45% of 20 mg/L MB at pH 8. While 30 mg of Pc/AA(Mw) able to remove up to 35% of 20 mg/L MB at the same pH condition. To describe the adsorption mechanism, both kinetic models pseudo-first-order, pseudo-second-order were employed. The results from kinetic data showed that it fitted the pseudo-first-order as compared to pseudo-second-order model equation. This study provides alternative of green, facile and affective biomaterial for dye absorbents that readily available.
    Matched MeSH terms: Acrylic Resins/chemistry
  11. Rasib SZM, Ahmad Z, Khan A, Akil HM, Othman MBH, Hamid ZAA, et al.
    Int J Biol Macromol, 2018 Mar;108:367-375.
    PMID: 29222015 DOI: 10.1016/j.ijbiomac.2017.12.021
    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier.
    Matched MeSH terms: Acrylic Resins/chemistry
  12. Nordin NA, Abdul Rahman N, Abdullah AH
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640766 DOI: 10.3390/molecules25133081
    Heavy metal pollution, such as lead, can cause contamination of water resources and harm human life. Many techniques have been explored and utilized to overcome this problem, with adsorption technology being the most common strategies for water treatment. In this study, carbon nanofibers, polyacrylonitrile (PAN)/sago lignin (SL) carbon nanofibers (PAN/SL CNF) and PAN/SL activated carbon nanofibers (PAN/SL ACNF), with a diameter approximately 300 nm, were produced by electrospinning blends of polyacrylonitrile and sago lignin followed by thermal and acid treatments and used as adsorbents for the removal of Pb(II) ions from aqueous solutions. The incorporation of biodegradable and renewable SL in PAN/SL blends fibers produces the CNF with a smaller diameter than PAN only but preserves the structure of CNF. The adsorption of Pb(II) ions on PAN/SL ACNF was three times higher than that of PAN/SL CNF. The enhanced removal was due to the nitric acid treatment that resulted in the formation of surface oxygenated functional groups that promoted the Pb(II) ions adsorption. The best-suited adsorption conditions that gave the highest percentage removal of 67%, with an adsorption capacity of 524 mg/g, were 40 mg of adsorbent dosage, 125 ppm of Pb(II) solution, pH 5, and a contact time of 240 min. The adsorption data fitted the Langmuir isotherm and the pseudo-second-order kinetic models, indicating that the adsorption is a monolayer, and is governed by the availability of the adsorption sites. With the adsorption capacity of 588 mg/g, determined via the Langmuir isotherm model, the study demonstrated the potential of PAN/SL ACNFs as the adsorbent for the removal of Pb(II) ions from aqueous solution.
    Matched MeSH terms: Acrylic Resins/chemistry*
  13. Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt A):1410-1421.
    PMID: 33045299 DOI: 10.1016/j.ijbiomac.2020.10.034
    Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.
    Matched MeSH terms: Acrylic Resins/chemistry
  14. Lee SY, Liu BL, Wu JY, Chang YK
    Food Chem, 2021 Feb 15;338:128144.
    PMID: 33092004 DOI: 10.1016/j.foodchem.2020.128144
    A weak ion-exchange membrane (P-COOH) was synthesized by alkaline hydrolysis of a polyacrylonitrile nanofiber membrane prepared by electrospinning process. The P-COOH membrane was characterized for its physical properties and its application for purification of lysozyme from chicken egg white was investigated. The lysozyme adsorption efficiency of the P-COOH membrane operating in a stirred cell contactor (Millipore, Model 8010) was evaluated. The effects of key parameters such as the feed concentration, the rotating speed, the flow rate of feed and the operating pressure were studied. The results showed successful purification of lysozyme with a high recovery yield of 98% and a purification factor of 63 in a single step. The purification strategy was scaled-up to the higher feedstock loading volume of 32.7 and 70 mL using stirred cell contactors of Model 8050 and 8200, respectively. The scale-up processes achieved similar purification results, proving linear scalability of the purification technique adopted.
    Matched MeSH terms: Acrylic Resins/chemistry
  15. Chen XY, Low HR, Loi XY, Merel L, Mohd Cairul Iqbal MA
    J Biomed Mater Res B Appl Biomater, 2019 08;107(6):2140-2151.
    PMID: 30758129 DOI: 10.1002/jbm.b.34309
    Graphene oxide (GO) is a potential material for wound dressing due to its excellent biocompatibility and mechanical properties. This study evaluated the effects of GO concentration on the synthesis of bacterial nanocellulose (BNC)-grafted poly(acrylic acid) (AA)-graphene oxide (BNC/P(AA)/GO) composite hydrogel and its potential as wound dressing. Hydrogels were successfully synthesized via electron-beam irradiation. The hydrogels were characterized by their mechanical properties, bioadhesiveness, water vapor transmission rates (WVTRs), water retention abilities, water absorptivity, and biocompatibility. Fourier transform infrared analysis showed the successful incorporation of GO into hydrogel. Thickness, gel fraction determination and morphological study revealed that increased GO concentration in hydrogels leads to reduced crosslink density and larger pore size, resulting in increased WVTR. Thus, highest swelling ratio was found in hydrogel with higher amount of GO (0.09 wt %). The mechanical properties of the composite hydrogel were maintained, while its hardness and bioadhesion were reduced with higher GO concentration in the hydrogel, affirming the durable and easy removable properties of a wound dressing. Human dermal fibroblast cell attachment and proliferation studies showed that biocompatibility of hydrogel was improved with the inclusion of GO in the hydrogel. Therefore, BNC/P(AA)/GO composite hydrogel has a potential application as perdurable wound dressing. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2140-2151, 2019.
    Matched MeSH terms: Acrylic Resins/chemistry*
  16. Pandey M, Choudhury H, D/O Segar Singh SK, Chetty Annan N, Bhattamisra SK, Gorain B, et al.
    Molecules, 2021 May 05;26(9).
    PMID: 34062995 DOI: 10.3390/molecules26092704
    A single ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that causes inflammation of the colonic mucosa at the distal colon and rectum. The mainstay therapy involves anti-inflammatory immunosuppression based on the disease location and severity. The disadvantages of using systemic corticosteroids for UC treatment is the amplified risk of malignancies and infections. Therefore, topical treatments are safer as they have fewer systemic side effects due to less systemic exposure. In this context, pH sensitive and enzymatically triggered hydrogel of pectin (PC) and polyacrylamide (PAM) has been developed to facilitate colon-targeted delivery of budesonide (BUD) for the treatment of UC. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), swelling ratio, and drug release. FT-IR spectroscopy confirmed the grafting as well loading of BUD in hydrogel. XRD showed the amorphous nature of hydrogel and increment in crystallinity after drug loading. On the other hand, SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading and also demonstrated a pH-responsive swelling behaviour, with decreased swelling in acidic media. The in-vitro release of BUD from the hydrogel exhibited a sustained release behaviour with non-ficken diffusion mechanism. The model that fitted best for BUD released was the Higuchi kinetic model. It was concluded that enzyme/pH dual-sensitive hydrogels are an effective colon-targeted delivery system for UC.
    Matched MeSH terms: Acrylic Resins/chemistry*
  17. Amin MC, Fell JT
    Drug Dev Ind Pharm, 2004;30(9):937-45.
    PMID: 15554218
    Percolation theory has been used with great interest in understanding the design and characterization of dosage forms. In this study, work has been carried out to investigate the behavior of binary mixture tablets containing excipients of similar and different deformation properties. The binary mixture tablets were prepared by direct compression using lactose, polyvinyl chloride (PVC), Eudragit RS 100, and microcrystalline cellulose (MCC). The application of percolation theory on the relationships between compactibility, Pmax, or compression susceptibility (compressibility), gamma, and mixture compositions reveals the presence of percolation thresholds even for mixtures of similar deformation properties. The results showed that all mixture compositions exhibited at least one discreet change in the slope, which was referred to as the percolation threshold. The PVC/Eudragit RS100 mixture compositions showed significant percolation threshold at 80% (w/w) PVC loading. Two percolation thresholds were observed from a series of binary mixtures containing similar plastic deformation materials (PVC/MCC). The percolation thresholds were determined at 20% (w/w) and 80% (w/w) PVC loading. These are areas where one of the components percolates throughout the system and the properties of the tablets are expected to experience a sudden change. Experimental results, however, showed that total disruption of the tablet physical properties at the specified percolation thresholds can be observed for PVC/lactose mixtures at 20-30% (w/w) loading while only minor changes in the tablets' strength for PVC/MCC or PVC/Eudragit RS 100 mixtures were observed.
    Matched MeSH terms: Acrylic Resins/chemistry
  18. Baig MR, Ariff FT, Yunus N
    Indian J Dent Res, 2011 Mar-Apr;22(2):210-2.
    PMID: 21891887 DOI: 10.4103/0970-9290.84288
    BACKGROUND: The clinical success of relining depends on the ability of reline resin to bond to denture base. Surface preparations may influence reline bond strength of urethane-based dimethacrylate denture base resin.
    AIM: To investigate the effect of bur preparation on the surface roughness (R a ) of eclipse denture base resin and its shear bond strength (SBS) to an intra-oral self-curing reline material. The mode of reline bonding failure was also examined.
    MATERIALS AND METHODS: Twenty-four cylindrical Eclipse™ specimens were prepared and separated into three groups of eight specimens each. Two groups were subjected to mechanical preparation using standard and fine tungsten carbide (TC) burs and the third group (control) was left unprepared. The R a of all specimens was measured using a contact stylus profilometer. Subsequently, relining was done on the prepared surface and SBS testing was carried out a day later using a universal testing machine.
    RESULTS: One-way ANOVA revealed significant differences (P<0.05) in R a and SBS values for all the groups. Post-hoc Tukey's HSD test showed significant differences (P<0.05) between all the groups in the R a values. For SBS also there were significant differences (P<0.05), except between standard bur and control.
    CONCLUSIONS: 1) There was a statistically significant difference in the R a of Eclipse™ specimens prepared using different carbide burs (P<0.05). 2) There was a statistically significant difference in the relined SBS (P<0.05) when prepared using different burs, but the difference between the standard bur and the control group was not statistically significant.
    Matched MeSH terms: Acrylic Resins/chemistry
  19. Ho YC, Norli I, Alkarkhi AF, Morad N
    Bioresour Technol, 2010 Feb;101(4):1166-74.
    PMID: 19854044 DOI: 10.1016/j.biortech.2009.09.064
    Polyacrylamide (PAM), a commonly used organic synthetic flocculant, is known to have high reduction in turbidity treatment. However, PAM is not readily degradable. In this paper, pectin as a biopolymeric flocculant is used. The objectives are (i) to determine the characteristics of both flocculants (ii) to optimize the treatment processes of both flocculants in synthetic turbid waste water. The results obtained indicated that pectin has a lower average molecular weight at 1.63 x 10(5) and PAM at 6.00 x 10(7). However, the thermal degradation results showed that the onset temperature for pectin is at 165.58 degrees C, while the highest onset temperature obtained for PAM is at 235.39 degrees C. The optimum treatment conditions for the biopolymeric flocculant for flocculating activity was at pH 3, cation concentration at 0.55 mM, and pectin concentration at 3 mg/L. In contrast, PAM was at pH 4, cation concentration >0.05 mM and PAM concentration between 13 and 30 mg/L.
    Matched MeSH terms: Acrylic Resins/chemistry*
  20. Ling BC
    Quintessence Int, 2004 Apr;35(4):294-8.
    PMID: 15119715
    This article describes a technique of constructing a set of maxillary and mandibular complete dentures in three visits instead of the usual five clinical appointments. This system of complete-denture construction is made possible because of the combined use of visible light-cured material as an impression tray and record base material, as well as the use of new biometric wax occlusion rims. Unlike some earlier techniques that use light-cured resin composites as the denture base materials, this method retains the use of heat-cured polymethylmethacrylate as the denture base material.
    Matched MeSH terms: Acrylic Resins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links