Displaying all 12 publications

Abstract:
Sort:
  1. Zamani S, Salehi M, Ehterami A, Fauzi MB, Abbaszadeh-Goudarzi G
    J Biomater Appl, 2024 Apr;38(9):957-974.
    PMID: 38453252 DOI: 10.1177/08853282241238581
    Skin tissue engineering has gained significant attention as a promising alternative to traditional treatments for skin injuries. In this study, we developed 3D hydrogel-based scaffolds, Alginate, incorporating different concentrations of Curcumin and evaluated their properties, including morphology, swelling behavior, weight loss, as well as hemo- and cytocompatibility. Furthermore, we investigated the therapeutic potential of Alginate hydrogel containing different amounts of Curcumin using an in vitro wound healing model. The prepared hydrogels exhibited remarkable characteristics, SEM showed that the pore size of hydrogels was 134.64 μm with interconnected pores, making it conducive for cellular infiltration and nutrient exchange. Moreover, hydrogels demonstrated excellent biodegradability, losing 63.5% of its weight over 14 days. In addition, the prepared hydrogels had a stable release of curcumin for 3 days. The results also show the hemocompatibility of prepared hydrogels and a low amount of blood clotting. To assess the efficacy of the developed hydrogels, 3T3 fibroblast growth was examined during various incubation times. The results indicated that the inclusion of Curcumin at a concentration of 0.1 mg/mL positively influenced cellular behavior. The animal study showed that Alginate hydrogel containing 0.1 mg/mL curcumin had high wound closure(more than 80%) after 14 days. In addition, it showed up-regulation of essential wound healing genes, including TGFβ1 and VEGF, promoting tissue repair and angiogenesis. Furthermore, the treated group exhibited down-regulation of MMP9 gene expression, indicating a reduction in matrix degradation and inflammation. The observed cellular responses and gene expression changes substantiate the therapeutic efficacy of prepared hydrogels. Consequently, our study showed the healing effect of alginate-based hydrogel containing Curcumin on skin injuries.
    Matched MeSH terms: Alginates/pharmacology
  2. Tong WY, Ahmad Rafiee AR, Leong CR, Tan WN, Dailin DJ, Almarhoon ZM, et al.
    Chemosphere, 2023 Sep;336:139212.
    PMID: 37315854 DOI: 10.1016/j.chemosphere.2023.139212
    Plastics are still the most popular food packaging material and many of them end up in the environment for a long period. Due to packaging material's inability to inhibit microbial growth, beef often contains microorganisms that affect its aroma, colour and texture. Cinnamic acid is categorized as generally recognised as safe and is permitted for use in food. The development of biodegradable food packaging film with cinnamic acid has never been conducted before. This present study was aimed to develop a biodegradable active packaging material for fresh beef using sodium alginate and pectin. The film was successfully developed with solution casting method. The films' thickness, colour, moisture level, dissolution, water vapour permeability, bending strength and elongation at break were comparable to those of polyethylene plastic film in terms of these attributes. The developed film also showed the degradability in soil of 43.26% in a duration of 15 days. Fourier Transform Infrared (FTIR) spectra showed that cinnamic acid was successfully incorporated with the film. The developed film showed significant inhibitory activity on all test foodborne bacteria. On Hohenstein challenge test, a 51.28-70.45% reduction on bacterial growth was also observed. The antibacterial efficacy of the established film by using fresh beef as food model. The meats wrapped with the film showed significant reduction in bacterial load throughout the experimental period by 84.09%. The colour of the beef also showed significant different between control film and edible film during 5 days test. Beef with control film turned into dark brownish and beef with cinnamic acid turn into light brownish. Sodium alginate and pectin film with cinnamic acid showed good biodegradability and antibacterial activity. Further studies can be conducted to investigate the scalability and commercial viability of this environmental-friendly food packaging materials.
    Matched MeSH terms: Alginates/pharmacology
  3. Shahdadi F, Faryabi M, Khan H, Sardoei AS, Fazeli-Nasab B, Goh BH, et al.
    Molecules, 2023 Jun 05;28(11).
    PMID: 37299028 DOI: 10.3390/molecules28114554
    Mentha longifolia is a valuable medicinal and aromatic plant that belongs to Lamiaceae family. This study looked at the antibacterial effects of M. longifolia essential oil and pulegone in edible coatings made of chitosan and alginate on the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli in cheese. For this purpose, first fresh mint plant was collected from the cold region of Jiroft in Kerman province. Plant samples were dried in the shade at ambient temperature, and essential oil was prepared using Clevenger. The essential oil was analyzed by gas chromatography using mass spectrometric (GC/MS) detection. The major composition of M. longifolia oil was pulegone (26.07%), piperitone oxide (19.72%), and piperitone (11.88%). The results showed that adding M. longifolia essential oils and pulegone to edible coatings significantly reduced the growth of bacteria during storage. The bacterial population decreased by increasing the concentration of chitosan, M. longifolia, and pulegone in edible coatings. When the effects of pulegone and M. longifolia essential oils on bacteria were compared, it was found that pulegone had a stronger effect on bacterial population reduction. Coating treatments showed more antibacterial activity on E. coli than other bacteria. In general, the results of this research showed that alginate and chitosan coatings along with M. longifolia essential oil and its active ingredient pulegone had antibacterial effects against S. aureus, L. monocytogenes, and E. coli in cheese.
    Matched MeSH terms: Alginates/pharmacology
  4. Chu WL, Phang SM
    Mar Drugs, 2016 Dec 07;14(12).
    PMID: 27941599 DOI: 10.3390/md14120222
    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
    Matched MeSH terms: Alginates/pharmacology
  5. Tay LX, Ahmad RE, Dashtdar H, Tay KW, Masjuddin T, Ab-Rahim S, et al.
    Am J Sports Med, 2012 Jan;40(1):83-90.
    PMID: 21917609 DOI: 10.1177/0363546511420819
    Mesenchymal stem cells (MSCs) represent a promising alternative form of cell-based therapy for cartilage injury. However, the capacity of MSCs for chondrogenesis has not been fully explored. In particular, there is presently a lack of studies comparing the effectiveness of MSCs to conventional autologous chondrocyte (autoC) treatment for regeneration of full-thickness cartilage defects in vivo.
    Matched MeSH terms: Alginates/pharmacology*
  6. Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F
    Curr Drug Targets, 2018;19(5):527-550.
    PMID: 28676002 DOI: 10.2174/1389450118666170704132523
    BACKGROUND: Diabetic foot ulcers (DFUs) are the chronic, non-healing complications of diabetic mellitus which compels a significant burden to the patients and the healthcare system. Peripheral vascular disease, diabetic neuropathy, and abnormal cellular and cytokine/chemokine activity are among the prime players which exacerbate the severity and prevent wound repair. Unlike acute wounds, DFUs impose a substantial challenge to the conventional wound dressings and demand the development of novel and advanced wound healing modalities. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, eliminate wound exudate and stimulate tissue regeneration.

    OBJECTIVE: To date, numerous conventional wound dressings are employed for the management of DFUs but there is a lack of absolute and versatile choice. The current review was therefore aimed to summarize and critically discuss the available evidences related to pharmaceutical and therapeutic viability of polymer-based dressings for the treatment of DFUs.

    RESULTS: A versatile range of naturally-originated polymers including chitosan (CS), hyaluronic acid (HA), cellulose, alginate, dextran, collagen, gelatin, elastin, fibrin and silk fibroin have been utilized for the treatment of DFUs. These polymers have been used in the form of hydrogels, films, hydrocolloids, foams, membranes, scaffolds, microparticles, and nanoparticles. Moreover, the wound healing viability and clinical applicability of various mutually modified, semi-synthetic or synthetic polymers have also been critically discussed.

    CONCLUSION: In summary, this review enlightens the most recent developments in polymer-based wound dressings with special emphasis on advanced polymeric biomaterials, innovative therapeutic strategies and delivery approaches for the treatment of DFUs.

    Matched MeSH terms: Alginates/pharmacology
  7. Zaharudin N, Salmeán AA, Dragsted LO
    Food Chem, 2018 Apr 15;245:1196-1203.
    PMID: 29287342 DOI: 10.1016/j.foodchem.2017.11.027
    Edible seaweeds are valuable because of their organoleptic properties and complex polysaccharide content. A study was conducted to investigate the potential of dried edible seaweed extracts, its potential phenolic compounds and alginates for α-amylase inhibitory effects. The kinetics of inhibition was assessed in comparison with acarbose. The methanol extract of Laminaria digitata and the acetone extract of Undaria pinnatifida showed inhibitory activity against α-amylase, IC50 0.74 ± 0.02 mg/ml and 0.81 ± 0.03 mg/ml, respectively; both showed mixed-type inhibition. Phenolic compound, 2,5-dihydroxybenzoic acid was found to be a potent inhibitor of α-amylase with an IC50 value of 0.046 ± 0.004 mg/ml. Alginates found in brown seaweeds appeared to be potent inhibitors of α-amylase activity with an IC50 of (0.075 ± 0.010-0.103 ± 0.017) mg/ml, also a mixed-type inhibition. Overall, the findings provide information that crude extracts of brown edible seaweeds, phenolic compounds and alginates are potent α-amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycaemia.
    Matched MeSH terms: Alginates/pharmacology*
  8. Elderdery AY, Alzerwi NAN, Alzahrani B, Alsrhani A, Alsultan A, Rayzah M, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):127490.
    PMID: 37979758 DOI: 10.1016/j.ijbiomac.2023.127490
    Hepatic cancer is among the most recurrently detected malignancies worldwide and one of the main contributors to cancer-associated mortality. With few available therapeutic choices, there is an instant necessity to explore suitable options. In this aspect, Nanotechnology has been employed to explore prospective chemotherapeutic approaches, especially for cancer treatment. Nanotechnology is concerned with the biological and physical properties of nanoparticles in the therapeutic use of drugs. In the current work, formulation, and characterization of α-Fe2O3-Sodium Alginate-Eugenol nanocomposites (FSE NCs) using several approaches like SEM and TEM, UV-visible, FTIR, and PL spectroscopy, XRD, EDAX, and DLS studies have been performed. With an average size of 50 nm, the rhombohedral structure of NCs was identified. Further, their anticancer activity against Hep3B liver cancer cell lines has been performed by cell viability, dual staining, DCFH-DA, Annexin-V/-FITC/PI, cell cycle analysis methods, and PI3K/Akt/mTOR signaling proteins were studied to assess the anticancer effects of the NCs in Hep3B cells. Also, anti-cancer activity on animal modeling in-vivo using zebra fishes to hematological parameters, liver enzymes, and histopathology study effectiveness was noticed. Moreover, the NCs reduced the viability, elevated the ROS accumulation, diminished the membrane integrity, reduced the antioxidants, blocked the cell cycle, and triggered the PI3K/Akt/mTOR signaling axis that eventually resulted in cell death. As a result, FSE NCs possess huge potential for use as a possible anticancer candidate.
    Matched MeSH terms: Alginates/pharmacology
  9. Shaharuddin S, Muhamad II
    Carbohydr Polym, 2015 Mar 30;119:173-81.
    PMID: 25563958 DOI: 10.1016/j.carbpol.2014.11.045
    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic.
    Matched MeSH terms: Alginates/pharmacology*
  10. Fareez IM, Lim SM, Mishra RK, Ramasamy K
    Int J Biol Macromol, 2015 Jan;72:1419-28.
    PMID: 25450046 DOI: 10.1016/j.ijbiomac.2014.10.054
    The vulnerability of probiotics at low pH and high temperature has limited their optimal use as nutraceuticals. This study addressed these issues by adopting a physicochemical driven approach of incorporating Lactobacillus plantarum LAB12 into chitosan (Ch) coated alginate-xanthan gum (Alg-XG) beads. Characterisation of Alg-XG-Ch, which elicited little effect on bead size and polydispersity, demonstrated good miscibility with improved bead surface smoothness and L. plantarum LAB12 entrapment when compared to Alg, Alg-Ch and Alg-XG. Sequential incubation of Alg-XG-Ch in simulated gastric juice and intestinal fluid yielded high survival rate of L. plantarum LAB12 (95%) at pH 1.8 which in turn facilitated sufficient release of probiotics (>7 log CFU/g) at pH 6.8 in both time- and pH-dependent manner. Whilst minimising viability loss at 75 and 90 °C, Alg-XG-Ch improved storage durability of L. plantarum LAB12 at 4 °C. The present results implied the possible use of L. plantarum LAB12 incorporated in Alg-XG-Ch as new functional food ingredient with health claims.
    Matched MeSH terms: Alginates/pharmacology*
  11. Vairappan CS
    Indian J Exp Biol, 2003 Aug;41(8):837-45.
    PMID: 15248481
    Brown algae of genus Sargassum are known to produce relatively higher amount of alginic acid. Optimal extraction of this algalcolloid for local consumption requires in-depth studies on post-harvest treatment of the algal fronds. Present investigation endeavors to establish the dynamics and inter-relationship of moisture content and bacteria found on the surface of the alga and alginic acid content during post-harvest desiccation of Sargassum stolonifolium Phang et Yoshida. Harvested fronds were subjected to desiccation for 31 days and bacterial dynamics were monitored with relation to moisture content and water activity index (a(w)). There was 85% decrease in moisture content, however, a(w) showed a more gradual decrease. Total bacterial count increased during the first week and attained maximal value on day 7. Thereafter, a drastic decrease was seen until day 14, followed by a gradual decline. Six species of bacteria were isolated and identified, i.e. Azomonas punctata, Azomonas sp., Escherichia coli, Micrococcus sp., Proteus vulgaris and Vibrio alginolyticus. Calculated ratios for increase in alginic acid content and decrease in moisture content were almost the same throughout the desiccation process, implying that extracellular alginase-producing bacteria did not use the alginic acid produced by the algae as its carbon source. It became apparent that drastic decrease in bacterial count after day 7 could not be attributed to salinity, moisture content, a(w) or lack of carbon source for the bacteria. The possible exposure of these bacteria to algal cell sap which is formed due to the rupture of algal cells was seen as the most likely reason for the drop in bacterial population. Scanning electron microscope (SEM) micrograph taken on day 10 of desiccation showed the presence of cracks and localities where bacteria were exposed to algal cell sap. In vitro antibacterial tests were carried out to verify the effect of algal extracts. Separation and purification of crude algal extracts via bioassay guided separation methodology revealed the identity of active compounds (i.e. gylcolipids and free fatty acids) involved in this inherently available antibacterial defense mechanism during algal desiccation.
    Matched MeSH terms: Alginates/pharmacology*
  12. Dashtdar H, Murali MR, Abbas AA, Suhaeb AM, Selvaratnam L, Tay LX, et al.
    Knee Surg Sports Traumatol Arthrosc, 2015 May;23(5):1368-1377.
    PMID: 24146054 DOI: 10.1007/s00167-013-2723-5
    PURPOSE: To investigate whether mesenchymal stem cells (MSCs) seeded in novel polyvinyl alcohol (PVA)-chitosan composite hydrogel can provide comparable or even further improve cartilage repair outcomes as compared to previously established alginate-transplanted models.

    METHODS: Medial femoral condyle defect was created in both knees of twenty-four mature New Zealand white rabbits, and the animals were divided into four groups containing six animals each. After 3 weeks, the right knees were transplanted with PVA-chitosan-MSC, PVA-chitosan scaffold alone, alginate-MSC construct or alginate alone. The left knee was kept as untreated control. Animals were killed at the end of 6 months after transplantation, and the cartilage repair was assessed through Brittberg morphological score, histological grading by O'Driscoll score and quantitative glycosaminoglycan analysis.

    RESULTS: Morphological and histological analyses showed significant (p < 0.05) tissue repair when treated with PVA-chitosan-MSC or alginate MSC as compared to the scaffold only and untreated control. In addition, safranin O staining and the glycosaminoglycan (GAG) content were significantly higher (p < 0.05) in MSC treatment groups than in scaffold-only or untreated control group. No significant difference was observed between the PVA-chitosan-MSC- and alginate-MSC-treated groups.

    CONCLUSION: PVA-chitosan hydrogel seeded with mesenchymal stem cells provides comparable treatment outcomes to that of previously established alginate-MSC construct implantation. This study supports the potential use of PVA-chitosan hydrogel seeded with MSCs for clinical use in cartilage repair such as traumatic injuries.

    Matched MeSH terms: Alginates/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links