Displaying all 15 publications

Abstract:
Sort:
  1. Dugan PJ, Barlow C, Agostinho AA, Baran E, Cada GF, Chen D, et al.
    Ambio, 2010 Jun;39(4):344-8.
    PMID: 20799685
    The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin's fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur.
    Matched MeSH terms: Animal Migration*
  2. Kadir SRA, Rasid MHFA, Kwong KO, Wong LL, Arai T
    Zookeys, 2017.
    PMID: 29134009 DOI: 10.3897/zookeys.695.13298
    Recent studies suggested that accurate species identification in the tropical anguillid eels based on morphological examination requires confirmation by molecular genetic analysis. Previous studies found that two tropical anguillid eels, Anguilla bicolor bicolor and A. bengalensis bengalensis, were found in peninsular Malaysia (West Malaysia) based on morphological and molecular genetic analyses. This study is the first record of A. marmorata in peninsular Malaysia confirmed by both morphological and molecular genetic analyses. The present study also suggests that accurate tropical eel species identification is difficult by morphological identification alone; therefore, molecular genetic analysis is needed for precise species confirmation.
    Matched MeSH terms: Animal Migration
  3. Arai T
    PLoS One, 2014;9(6):e100779.
    PMID: 24964195 DOI: 10.1371/journal.pone.0100779
    The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.
    Matched MeSH terms: Animal Migration*
  4. Akib NA, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, et al.
    PLoS One, 2015;10(3):e0119749.
    PMID: 25786216 DOI: 10.1371/journal.pone.0119749
    Phylogeographic patterns and population structure of the pelagic Indian mackerel, Rastrelliger kanagurta were examined in 23 populations collected from the Indonesian-Malaysian Archipelago (IMA) and the West Indian Ocean (WIO). Despite the vast expanse of the IMA and neighbouring seas, no evidence for geographical structure was evident. An indication that R. kanagurta populations across this region are essentially panmictic. This study also revealed that historical isolation was insufficient for R. kanagurta to attain migration drift equilibrium. Two distinct subpopulations were detected between the WIO and the IMA (and adjacent populations); interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the IMA and WIO regions suggest historical isolation as a result of fluctuations in sea levels during the late Pleistocene. This occurrence resulted in the evolution of a phylogeographic break for this species to the north of the Andaman Sea.
    Matched MeSH terms: Animal Migration*
  5. Asaduzzaman M, Wahab MA, Rahman MJ, Nahiduzzzaman M, Dickson MW, Igarashi Y, et al.
    Sci Rep, 2019 11 05;9(1):16050.
    PMID: 31690767 DOI: 10.1038/s41598-019-52465-2
    The anadromous Hilsa shad (Tenualosa ilisha) live in the Bay of Bengal and migrate to the estuaries and freshwater rivers for spawning and nursing of the juveniles. This has led to two pertinent questions: (i) do all Hilsa shad that migrate from marine to freshwater rivers come from the same population? and (ii) is there any relationship between adults and juveniles of a particular habitat? To address these questions, NextRAD sequencing was applied to genotype 31,276 single nucleotide polymorphism (SNP) loci for 180 individuals collected from six strategic locations of riverine, estuarine and marine habitats. FST OutFLANK approach identified 14,815 SNP loci as putatively neutral and 79 SNP loci as putatively adaptive. We observed that divergent local adaptations in differing environmental habitats have divided Hilsa shad into three genetically structured ecotypes: turbid freshwater (Western Riverine), clear freshwater (Eastern Riverine) and brackish-saline (Southern Estuarine-Marine). Our results also revealed that genes involved in neuronal activity may have facilitated the juveniles' Hilsa shad in returning to their respective natal rivers for spawning. This study emphasized the application of fundamental population genomics information in strategizing conservation and management of anadromous fish such as Hilsa shad that intersect diverse ecotypes during their life-history stages.
    Matched MeSH terms: Animal Migration*
  6. García-Berro A, Talla V, Vila R, Wai HK, Shipilina D, Chan KG, et al.
    Mol Ecol, 2023 Feb;32(3):560-574.
    PMID: 36336800 DOI: 10.1111/mec.16770
    Migration is typically associated with risk and uncertainty at the population level, but little is known about its cost-benefit trade-offs at the species level. Migratory insects in particular often exhibit strong demographic fluctuations due to local bottlenecks and outbreaks. Here, we use genomic data to investigate levels of heterozygosity and long-term population size dynamics in migratory insects, as an alternative to classical local and short-term approaches such as regional field monitoring. We analyse whole-genome sequences from 97 Lepidoptera species and show that individuals of migratory species have significantly higher levels of genome-wide heterozygosity, a proxy for effective population size, than do nonmigratory species. Also, we contribute whole-genome data for one of the most emblematic insect migratory species, the painted lady butterfly (Vanessa cardui), sampled across its worldwide distributional range. This species exhibits one of the highest levels of genomic heterozygosity described in Lepidoptera (2.95 ± 0.15%). Coalescent modelling (PSMC) shows historical demographic stability in V. cardui, and high effective population size estimates of 2-20 million individuals 10,000 years ago. The study reveals that the high risks associated with migration and local environmental fluctuations do not seem to decrease overall genetic diversity and demographic stability in migratory Lepidoptera. We propose a "compensatory" demographic model for migratory r-strategist organisms in which local bottlenecks are counterbalanced by reproductive success elsewhere within their typically large distributional ranges. Our findings highlight that the boundaries of populations are substantially different for sedentary and migratory insects, and that, in the latter, local and even regional field monitoring results may not reflect whole population dynamics. Genomic diversity patterns may elucidate key aspects of an insect's migratory nature and population dynamics at large spatiotemporal scales.
    Matched MeSH terms: Animal Migration
  7. Jenkins TM, Jones SC, Lee CY, Forschler BT, Chen Z, Lopez-Martinez G, et al.
    Mol Phylogenet Evol, 2007 Mar;42(3):612-21.
    PMID: 17254806
    Coptotermes gestroi, the Asian subterranean termite (AST), is an economically important structural and agricultural pest that has become established in many areas of the world. For the first time, phylogeography was used to illuminate the origins of new found C. gestroi in the US Commonwealth of Puerto Rico; Ohio, USA; Florida, USA; and Brisbane, Australia. Phylogenetic relationships of C. gestroi collected in indigenous locations within Malaysia, Thailand, and Singapore as well as from the four areas of introduction were investigated using three genes (16S rRNA, COII, and ITS) under three optimality criteria encompassing phenetic and cladistic assumptions (maximum parsimony, maximum likelihood, and neighbor-joining). All three genes showed consistent support for a close genetic relationship between C. gestroi samples from Singapore and Ohio, whereas termite samples from Australia, Puerto Rico, and Key West, FL were more closely related to those from Malaysia. Shipping records further substantiated that Singapore and Malaysia were the likely origin of the Ohio and Australia C. gestroi, respectively. These data provide support for using phylogeography to understand the dispersal history of exotic termites. Serendipitously, we also gained insights into concerted evolution in an ITS cluster from rhinotermitid species in two genera.
    Matched MeSH terms: Animal Migration/physiology*
  8. Araujo G, Agustines A, Tracey B, Snow S, Labaja J, Ponzo A
    Sci Rep, 2019 11 20;9(1):17209.
    PMID: 31748588 DOI: 10.1038/s41598-019-53718-w
    The Philippines is home to the second largest known population of whale sharks in the world. The species is listed as endangered due to continued population declines in the Indo-Pacific. Knowledge about the connectivity within Southeast Asia remains poor, and thus international management is difficult. Here, we employed pop-up archival tags, data mining and dedicated effort to understand an aggregation of whale sharks at Honda Bay, Palawan, Philippines, and its role in the species' conservation. Between Apr and Oct 2018, we conducted 159 surveys identifying 117 individual whale sharks through their unique spot patterns (96.5% male, mean 4.5 m). A further 66 individual whale sharks were identified from local operators, and data mined on social media platforms. The satellite telemetry data showed that the whale sharks moved broadly, with one individual moving to Sabah, Malaysia, before returning to the site <1 year later. Similarly, another tagged whale shark returned to the site at a similar periodicity after reaching the Malay-Filipino border. One individual whale shark first identified in East Kalimantan, Indonesia by a citizen scientist was resighted in Honda Bay ~3.5 years later. Honda Bay is a globally important site for the endangered whale shark with connectivity to two neighbouring countries, highlighting the need for international cooperation to manage the species.
    Matched MeSH terms: Animal Migration*
  9. Arai T, Chino N
    J Fish Biol, 2019 May;94(5):752-758.
    PMID: 30847927 DOI: 10.1111/jfb.13952
    Fish movements between aquatic habitats of different salinity ranges (fresh, estuarine, marine) by the tropical catadromous eels Anguilla bicolor bicolor and A. bicolor pacifica were examined by analysing the otolith strontium and calcium concentrations of yellow (immature) and silver (mature) stage eels collected in south-east Asian (Indonesia, Malaysia and Vietnam) waters. The ratios suggest that all migratory-type eels, including freshwater, brackish water and marine residents, pass the river mouth. However, the habitat preference was different among the sites (countries). In Indonesia and Vietnam, most A. bicolor bicolor and A. bicolor pacifica were either marine or brackish water residents in this study. Alternatively, most A. bicolor bicolor were freshwater residents in Malaysia; such a typical catadromous migration pattern in these eels has not been found in previous studies. The wide range of otolith Sr:Ca in both subspecies indicates that the habitat use of these tropical eels was opportunistic among fresh, brackish and marine waters during their growth phases following recruitment to coastal areas. The geographical variability of migratory histories suggests that habitat use might be determined by the inter and intraspecific competition and environmental conditions at each site.
    Matched MeSH terms: Animal Migration*
  10. Arai T, Chai IJ, Iizuka Y, Chang CW
    Sci Rep, 2020 10 09;10(1):16890.
    PMID: 33037236 DOI: 10.1038/s41598-020-72788-9
    Anguillid eels of the genus Anguilla, which have a unique catadromous life history, are widely distributed across many parts of the world. However, little research has been conducted on the behavioural mechanisms of habitat segregation between sympatric species in tropical anguillid eels. To understand the ecological and behavioural mechanisms involved in the life history and migration of tropical anguillid eels, strontium (Sr):calcium (Ca) ratios were examined in otoliths of A. bengalensis bengalensis (41 specimens) and A. bicolor bicolor (130 specimens) collected from ten rivers in northwestern Peninsular Malaysia. The otolith Sr:Ca ratios revealed different habitat use between the two species. The broad range of otolith Sr:Ca ratios and habitat shift found in A. bicolor bicolor suggested that its habitat utilization was opportunistic in environments of varying salinity. A. bicolor bicolor prefers to live in the midstream to downstream areas with tidal influences. A. bengalensis bengalensis, however, was found to only reside in freshwater environments throughout their continental growth. A. bengalensis bengalensis tends to live in upstream area with no tidal influence. Their habitat use, migratory history, and habitat distribution indicate that habitat segregation occurs between the two species, leading to the different habitat preferences in tropical river systems.
    Matched MeSH terms: Animal Migration*
  11. Arai T, Taha H, Amalina R, Iizuka Y, Chang CW
    J Fish Biol, 2019 Dec;95(6):1506-1511.
    PMID: 31606890 DOI: 10.1111/jfb.14154
    Tenualosa ilisha was found recently in the Perak River in western Peninsular Malaysia. Molecular phylogenetic and haplotype network analyses suggest that T. ilisha has two genetically distinct populations/groups: (i) Peninsular Malaysia (Malaysia population), and (ii) Peninsular Malaysia, Thailand, India and Bangladesh (Indian Ocean population). The results also suggest that the T ilisha population in Peninsular Malaysia is genetically heterogeneous with a typical anadromous migration pattern.
    Matched MeSH terms: Animal Migration
  12. Sutou M, Kato T, Ito M
    Mol Ecol Resour, 2011 Nov;11(6):992-1001.
    PMID: 21693000 DOI: 10.1111/j.1755-0998.2011.03040.x
    Long columns of migrating larval sciarid armyworms were discovered in central and northern Japan, specifically Kanagawa, Gunma, Miyagi and Akita prefectures, as well as Hokkaido. This is the first examination of armyworms in East Asia. In Europe, armyworms have been identified as Sciara militaris, belonging to the family Sciaridae (sciarid flies or black fungus gnats), by rearing them to adulthood. In Japan, we were unable to obtain live samples for rearing; therefore, DNA barcodes were obtained from the samples of armyworms collected in the Gunma and Miyagi prefectures. The DNA barcodes were compared with those obtained from the following samples: pupae of S. militaris from UK, adults of Sciara kitakamiensis, Sciara humeralis, Sciara hemerobioides, Sciara thoracica, Sciara helvola and Sciara melanostyla from Japan, and adults of one undescribed Sciara species from Malaysia. Neighbour-joining, maximum parsimony, and maximum likelihood analyses revealed that the armyworms discovered in Japan are S. kitakamiensis. Although adults of this species have been recorded in several locations in Japan, this is the first report of migrating larval armyworms. DNA barcodes were effectively used to link different life stages of this species. The average intraspecific and interspecific pairwise genetic distances of the genus Sciara were 0.3% and 12.6%, respectively. The present study illustrates that DNA barcodes are an effective means of identifying sciarid flies in Japan.
    Matched MeSH terms: Animal Migration
  13. Lim HC, Sheldon FH
    Mol Ecol, 2011 Aug;20(16):3414-38.
    PMID: 21777318 DOI: 10.1111/j.1365-294X.2011.05190.x
    Sundaland has a dynamic geographic history because its landmasses were periodically interconnected when sea levels fell during glacial periods. Superimposed on this geographic dynamism were environmental changes related to climatic oscillations. To investigate how tropical taxa responded to such changes, we studied the divergence and demographic history of two co-distributed rainforest passerine species, Arachnothera longirostra and Malacocincla malaccensis. We sampled birds primarily from Borneo and the Malay Peninsula, which straddle the now-submerged Sunda shelf, and analysed multilocus DNA data with a variety of coalescent and gene genealogy methods. Cross-shelf divergence in both species occurred well before the last glacial maximum, i.e., before the most recent land connection. However, post-divergence gene flow occurred, and it was more pronounced in A. longirostra (a highly vagile nectarivore/insectivore) than in M. malaccensis (an understory insectivore). Despite current habitat continuity on Borneo, the population of M. malaccensis in northeastern Borneo is substantially divergent from that on the rest of the island. The NE population experienced dramatic demographic fluctuations, probably because of competition with the other population, which expanded from western Borneo after the mid-Pleistocene. In contrast, the Borneo population of A. longirostra has little structure and appears to have experienced demographic expansion 16 kya, long after it had diverged from the Malay Peninsula population (630-690 kya). Malay Peninsula populations of both species have remained relatively stable. Overall, the most recent glacial period was not the chief determinant of the evolutionary dynamics of our study species, and in this respect, they are different from temperate species.
    Matched MeSH terms: Animal Migration
  14. Arai T
    Mar Pollut Bull, 2013 Feb 15;67(1-2):166-76.
    PMID: 23246303 DOI: 10.1016/j.marpolbul.2012.11.006
    The bioaccumulation of organochlorines (OCs) in the muscle tissue of sea-run (anadromous) and freshwater-resident (fluvial) white-spotted charr (Salvelinus leucomaenis) was determined to assess the ecological risk related to intraspecies variations in diadromous fish life history as they migrate between sea and freshwater. Generally, there were significant correlations between the accumulation of OCs such as DDTs, HCB, HCHs and CHLs. In addition, various biological characteristics, such as total length (TL), body weight (BW) and age, and number of downstream migration (NDM) were correlated. A positive correlation occurred between the lipid content and the OC concentrations. Close linear relationships were found between TL, BW and NDM and the lipid content. Although they are both the same species, the OCs concentrations in the anadromous fish were significantly higher than those in the fluvial individuals. These results suggest that anadromous S. leucomaenis have a higher ecological risk for OCs exposure than the fluvial fish.
    Matched MeSH terms: Animal Migration
  15. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, et al.
    Nature, 2015 Aug 20;524(7565):347-50.
    PMID: 26266979 DOI: 10.1038/nature14949
    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
    Matched MeSH terms: Animal Migration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links