Displaying publications 1 - 20 of 155 in total

Abstract:
Sort:
  1. Abdsamah O, Zaidi NT, Sule AB
    Pak J Pharm Sci, 2012 Jul;25(3):675-8.
    PMID: 22713960
    Present study aimed to investigate the in vitro antimicrobial activity of the chloroform, methanol and aqueous extracts of Ficus deltoidea at 10mg/ml, 20mg/ml and 50 mg/ml, respectively using the disc diffusion method against 2 Gram positive {Staphylococcus aureus (IMR S-277), Bacillus subtilis (IMR K-1)}, 2 Gram negative {Escherichia coli (IMR E-940), Pseudomonas aeroginosa (IMR P-84)} and 1 fungal strain, Candida albicans (IMR C-44). All the extracts showed inhibitory activity on the fungus, Gram-positive and Gram-negative bacteria strains tested except for the chloroform and aqueous extracts on B. subtilis, E. coli, and P. aeroginosa. The methanol extract exhibited good antibacterial and antifungal activities against the test organisms. The methanol extract significantly inhibited the growth of S. aureus forming a wide inhibition zone (15.67 ± 0.58 mm) and lowest minimum inhibitory concentration (MIC) value (3.125 mg/ml). B. subtilis was the least sensitive to the chloroform extract (6.33 ± 0.58 mm) and highest minimum inhibitory concentration (MIC) value (25 mg/ml). Antimicrobial activity of F. deltoidea in vitro further justifies its utility in folkleric medicines for the treatment of infections of microbial origin.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  2. Sartelli M, Weber DG, Ruppé E, Bassetti M, Wright BJ, Ansaloni L, et al.
    World J Emerg Surg, 2016;11:33.
    PMID: 27429642 DOI: 10.1186/s13017-016-0089-y
    Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  3. Wan Salleh WM, Ahmad F, Yen KH
    Nat Prod Commun, 2014 Dec;9(12):1795-8.
    PMID: 25632488
    The study was designed to examine the chemical composition and antimicrobial activities of essential oils extracted from the aerial parts of three Piper species: Piper abbreviatum, P. erecticaule and P. lanatum, all from Malaysia. GC and GC/MS analysis showed qualitative and quantitative differences between these oils. GC and GC-MS analysis of P. abbreviatum, P. erecticaule and P. lanatum oils resulted in the identification of 33, 35 and 39 components, representing 70.5%, 63.4% and 78.2% of the components, respectively. The major components of P. abbreviatum oil were spathulenol (11.2%), (E)-nerolidol (8.5%) and β-caryophyllene (7.8%), whereas P. erecticaule oil mainly contained β-caryophyllene (5.7%) and spathulenol (5.1%). Borneol (7.5%), β-caryophyllene (6.6%) and α-amorphene (5.6%) were the most abundant components in P. lanatum oil. Antimicrobial activity was carried out using disc diffusion and broth micro-dilution method against nine microorganisms. All of the essential oils displayed weak activity towards Gram-positive bacteria with MIC values in the range 250-500 μg/mL. P. erecticaule oil showed the best activity on Aspergillus niger (MIC 31.3 μg/mL), followed by P. lanatum oil (MIC 62.5 μg/mL). This study demonstrated that the essential oils have potential as antimicrobial agents and may be useful in the pharmaceutical and cosmetics industries.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  4. Ahmad AF, Heaselgrave W, Andrew PW, Kilvington S
    J. Eukaryot. Microbiol., 2013 Sep-Oct;60(5):539-43.
    PMID: 23869955 DOI: 10.1111/jeu.12062
    The free-living amoeba Balamuthia mandrillaris causes usually fatal encephalitis in humans and animals. Only limited studies have investigated the efficacy of antimicrobial agents against the organism. Assay methods were developed to assess antimicrobial efficacy against both the trophozoite and cyst stage of B. mandrillaris (ATCC 50209). Amphotericin B, ciclopirox olamine, miltefosine, natamycin, paromomycin, pentamidine isethionate, protriptyline, spiramycin, sulconazole and telithromycin had limited activity with amoebacidal levels of > 135-500 μM. However, diminazene aceturate (Berenil(®) ) was amoebacidal at 7.8 μM and 31.3-61.5 μM for trophozoites and cysts, respectively. Assays for antimicrobial testing may improve the prognosis for infection and aid in the development of primary selective culture isolation media.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  5. Mavani HAK, Tew IM, Wong L, Yew HZ, Mahyuddin A, Ahmad Ghazali R, et al.
    PMID: 32679828 DOI: 10.3390/ijerph17145107
    Sodium hypochlorite (NaOCl), an effective endodontic irrigant against Enterococcus faecalis (EF), is harmful to periapical tissues. Natural pineapple-orange eco-enzymes (M-EE) and papaya eco-enzyme (P-EE) could be potential alternatives. This study aimed to assess the antimicrobial efficacy of M-EE and P-EE at different concentrations and fermentation periods against EF, compared to 2.5% NaOCl. Fermented M-EE and P-EE (3 and 6 months) at various concentrations were mixed with EF in a 96-well plate incubated for 24 h anaerobically. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of M-EE and P-EE were determined via EF growth observation. EF inhibition was quantitatively measured and compared between different irrigants using the one-way analysis of variance (ANOVA), and different fermentation periods using the independent-samples T-test. M-EE and P-EE showed MIC at 50% and MBC at 100% concentrations. There was no significant difference in antimicrobial effect when comparing M-EE and P-EE at 50% and 100% to 2.5% NaOCl. P-EE at 6 months fermentation exhibited higher EF inhibition compared to 3 months at concentrations of 25% (p = 0.017) and 0.78% (p = 0.009). The antimicrobial properties of M-EE and P-EE, at both 100% and 50% concentrations, are comparable to 2.5% NaOCl. They could therefore be potential alternative endodontic irrigants, but further studies are required.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  6. Ibrahim H, Sivasothy Y, Syamsir DR, Nagoor NH, Jamil N, Awang K
    ScientificWorldJournal, 2014;2014:430831.
    PMID: 24987733 DOI: 10.1155/2014/430831
    The essential oils obtained by hydrodistillation of the unripe and ripe fruits of Alpinia mutica Roxb. and Alpinia latilabris Ridl. were analysed by capillary GC and GC-MS. The oils were principally monoterpenic in nature. The unripe and ripe fruit oils of A. mutica were characterized by camphor (21.0% and 15.8%), camphene (16.6% and 10.2%), β-pinene (8.6% and 13.5%), and trans,trans-farnesol (8.0% and 11.2%), respectively. The oils of the unripe and ripe fruits were moderately active against Staphylococcus aureus, Bacillus subtilis, Trichophyton mentagrophytes, and Trichophyton rubrum. 1,8-Cineole (34.2% and 35.9%) and β-pinene (20.2% and 19.0%) were the two most abundant components in the unripe and ripe fruit oils of A. latilabris. The oil of the unripe fruits elicits moderate activity against Staphylococcus aureus and Trichophyton mentagrophytes while Candida glabrata was moderately sensitive to the oil of the ripe fruits.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  7. Lee LH, Zainal N, Azman AS, Eng SK, Goh BH, Yin WF, et al.
    ScientificWorldJournal, 2014;2014:698178.
    PMID: 25162061 DOI: 10.1155/2014/698178
    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  8. Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Geilich BM, Webster TJ
    Int J Nanomedicine, 2014;9:3801-14.
    PMID: 25143729 DOI: 10.2147/IJN.S61143
    Because of their magnetic properties, magnetic nanoparticles (MNPs) have numerous diverse biomedical applications. In addition, because of their ability to penetrate bacteria and biofilms, nanoantimicrobial agents have become increasingly popular for the control of infectious diseases. Here, MNPs were prepared through an iron salt coprecipitation method in an alkaline medium, followed by a chitosan coating step (CS-coated MNPs); finally, the MNPs were loaded with ampicillin (amp) to form an amp-CS-MNP nanocomposite. Both the MNPs and amp-CS-MNPs were subsequently characterized and evaluated for their antibacterial activity. X-ray diffraction results showed that the MNPs and nanocomposites were composed of pure magnetite. Fourier transform infrared spectra and thermogravimetric data for the MNPs, CS-coated MNPs, and amp-CS-MNP nanocomposite were compared, which confirmed the CS coating on the MNPs and the amp-loaded nanocomposite. Magnetization curves showed that both the MNPs and the amp-CS-MNP nanocomposites were superparamagnetic, with saturation magnetizations at 80.1 and 26.6 emu g(-1), respectively. Amp was loaded at 8.3%. Drug release was also studied, and the total release equilibrium for amp from the amp-CS-MNPs was 100% over 400 minutes. In addition, the antimicrobial activity of the amp-CS-MNP nanocomposite was determined using agar diffusion and growth inhibition assays against Gram-positive bacteria and Gram-negative bacteria, as well as Candida albicans. The minimum inhibitory concentration of the amp-CS-MNP nanocomposite was determined against bacteria including Mycobacterium tuberculosis. The synthesized nanocomposites exhibited antibacterial and antifungal properties, as well as antimycobacterial effects. Thus, this study introduces a novel β-lactam antibacterial-based nanocomposite that can decrease fungus activity on demand for numerous medical applications.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  9. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA
    Int J Nanomedicine, 2013;8:4467-79.
    PMID: 24293998 DOI: 10.2147/IJN.S50837
    Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2-350 nm, depending on the concentration of the chitosan stabilizer.
    Matched MeSH terms: Anti-Infective Agents/pharmacology
  10. Ghasemzadeh A, Jaafar HZ
    Molecules, 2013 May 21;18(5):5965-79.
    PMID: 23698049 DOI: 10.3390/molecules18055965
    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  11. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF
    Asian Pac J Trop Biomed, 2012 Jun;2(6):427-9.
    PMID: 23569943 DOI: 10.1016/S2221-1691(12)60069-0
    To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba).
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  12. Aal-Saraj AB, Ariffin Z, Masudi SM
    Aust Endod J, 2012 Aug;38(2):60-3.
    PMID: 22827817 DOI: 10.1111/j.1747-4477.2010.00241.x
    The aim of this study was to evaluate the antimicrobial activity of a new experimental nano-hydroxyapatite epoxy resin-based sealer (Nanoseal) with several other commercially available sealers; AH26, Tubliseal, Sealapex and Roekoseal against Enterococcus faecalis, Pseudomonas aeruginosa, Streptococcus mutans, Streptococcus sobrinus and Escherichia coli for up to 7 days. Agar diffusion was used in this study. Fifty Muller-Hinton agar plates were prepared and divided into five experimental groups (n = 10), for each micro-organism. Another 10 agar plates were used as positive and negative controls. Endodontic sealers were tested against each micro-organism. Inhibition zones produced were recorded. The results of this study showed that all test materials exhibited inhibition zones towards the tested micro-organisms for 7 days except for Roekoseal, which showed no inhibition zones. Nanoseal and AH26 exhibited similar zones of inhibition. Significant difference was found between Nanoseal and the other tested sealers (P < 0.001).
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  13. Alkhamaiseh SI, Taher M, Ahmad F, Qaralleh H, Althunibat OY, Susanti D, et al.
    Pak J Pharm Sci, 2012 Jul;25(3):555-63.
    PMID: 22713941
    Recently there was huge increase in using of 'herbal products'. These can be defined as plants, parts of plants or extracts from plants that are used for curing disease. However, Calophyllum species is a tropical plant and it has been used in traditional medicine, the limitation in safety and effectiveness information could lead to serious health problems. Providing information for communities by evaluating the phytochemical contents, antioxidant, antimicrobial and cytotoxic activities will improve the therapeutic values. Three main Calophyllum canum fractions (none - high polar) were tested to find out the phenolic, flavonoid, flavonol content, DPPH radical scavenging, reducing power and chelating iron ions. Also were tested against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Psedomonas aeruginosa, Candida albicans, and Cryptococcus neoformans. In addition, cytotoxic activity was assayed against lung cancer A549 cell line. The methanol fraction showed no bioactivity but achieved the highest amount of phenolic, flavonol and flavonoid contents, also it showed a significant result as antioxidant, reducing power and chelating agent. The n-hexane fraction achieved the minimum inhibitory concentration (MIC) value 12.5 μg. mL(-1) against B. cereus while the MIC value for DCM fraction was 25 μg. mL(-1). The DCM fraction was more active against S. aureus where the result was 50 μg. mL(-1) while the n-hexane fraction was 100 μg. mL(-1). The three main fractions have shown no activity against gram negative bacterial and fungal. The n-hexane and DCM fractions have shown cytotoxicity against lung cancer cell line; the 50% inhibition concentration (IC(50)) was 22 ± 2.64 and 32 ± 3.78 μg. mL(-1) respectively. The results were statistically significant (P < 0.05). Among the results, C. canum fractions proved to be effective against gram positive bacterial and anti-proliferation activity. Also it showed antioxidant activity as well. The results provided beneficial information for communities as well as can help to search for alternative drugs, and will contribute to establish safe and effective use of phytomedicines in the treatment of diseases.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  14. Saad S, Taher M, Susanti D, Qaralleh H, Rahim NA
    Asian Pac J Trop Med, 2011 Jul;4(7):523-5.
    PMID: 21803301 DOI: 10.1016/S1995-7645(11)60138-7
    OBJECTIVE: To investigate the antimicrobial activities of n-hexane, ethyl acetate and methanol extracts of the leaves of Lumnitzera littorea (L. littorea) against six human pathogenic microbes.

    METHODS: The antimicrobial activity was evaluated using disc diffusion and microdilution methods.

    RESULTS: The antimicrobial activities of the crude extracts were increased with increasing the concentration. It is clear that n-hexane extract was the most effective extract. Additionally, Gram positive Bacillus cereus (B. cereus) appear to be the most sensitive strain while Pseudomonas aeruginosa (P. aeruginosa) and the yeast strains (Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans)) appear to be resistance to the tested concentrations since no inhibition zone was observed. The inhibition of microbial growth at concentration as low as 0.04 mg/mL indicated the potent antimicrobial activity of L. littorea extracts.

    CONCLUSIONS: The obtained results are considered sufficient for further study to isolate the compounds responsible for the activity and suggesting the possibility of finding potent antibacterial agents from L. littorea extracts.

    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  15. Najafian L, Babji AS
    Peptides, 2012 Jan;33(1):178-85.
    PMID: 22138166 DOI: 10.1016/j.peptides.2011.11.013
    Fishes are rich sources of structurally diverse bioactive compounds. In recent years, much attention has been paid to the existence of peptides with biological activities and proteins derived from foods that might have beneficial effects for humans. Antioxidant and antimicrobial peptides isolated from fish sources may be used as functional ingredients in food formulations to promote consumer health and improve the shelf life of food products. This paper presents an overview of the antioxidant and antimicrobial peptides derived from various fishes. In addition, we discuss the extraction of fish proteins, enzymatic production, and the techniques used to isolate and characterize these compounds. Furthermore, we review the methods used to assay the bioactivities and their applications in food and nutraceuticals.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  16. Mustaffa F, Indurkar J, Ismail S, Shah M, Mansor SM
    Molecules, 2011 Apr 08;16(4):3037-47.
    PMID: 21478819 DOI: 10.3390/molecules16043037
    This study was designed to investigate the antimicrobial activity of Cinnamomum iners standardized leave methanolic extract (CSLE), its fractions and isolated compounds. CSLE and fractions were subjected to disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests using different Gram positive and Gram negative bacteria and yeast. Within the series of fractions tested, the ethyl acetate fraction was the most active, particularly against methicillin resistant Staphylococcus aureus (MRSA) and Escherichia coli, with MIC values of 100 and 200 µg/mL, respectively. The active compound in this fraction was isolated and identified as xanthorrhizol [5-(1, 5-dimethyl-4-hexenyl)-2-methylphenol] by various spectroscopic techniques. The overall results of this study provide evidence that Cinnamomum iners leaves extract as well as the isolated compound xanthorrhizol exhibit antimicrobial activity for both Gram negative and Gram positive pathogens, especially against MRSA strains.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  17. Waters L, Worthen E, O'mahony C
    Int J STD AIDS, 2006 Oct;17(10):710.
    PMID: 17059644
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  18. Wiart C, Hannah A, Yassim M, Hamimah H, Sulaiman M
    J Ethnopharmacol, 2004 Dec;95(2-3):285-6.
    PMID: 15507350
    The hexane, dichloromethane, ethyl acetate and methanol fractions of leaves of Acalypha siamensis Oliv. ex Gage were evaluated for antibacterial and antifungal activity. The antibacterial activity was more pronounced in the ethyl acetate and methanol extracts. No activity was shown against tested moulds.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  19. Henriksson PJ, Troell M, Rico A
    Proc Natl Acad Sci U S A, 2015 Jun 30;112(26):E3317.
    PMID: 26045495 DOI: 10.1073/pnas.1508952112
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
  20. Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, et al.
    Molecules, 2015;20(7):11808-29.
    PMID: 26132906 DOI: 10.3390/molecules200711808
    The present study reports a bioassay-guided isolation of β-caryophyllene from the essential oil of Aquilaria crassna. The structure of β-caryophyllene was confirmed using FT-IR, NMR and MS. The antimicrobial effect of β-caryophyllene was examined using human pathogenic bacterial and fungal strains. Its anti-oxidant properties were evaluated by DPPH and FRAP scavenging assays. The cytotoxicity of β-caryophyllene was tested against seven human cancer cell lines. The corresponding selectivity index was determined by testing its cytotoxicity on normal cells. The effects of β-caryophyllene were studied on a series of in vitro antitumor-promoting assays using colon cancer cells. Results showed that β-caryophyllene demonstrated selective antibacterial activity against S. aureus (MIC 3 ± 1.0 µM) and more pronounced anti-fungal activity than kanamycin. β-Caryophyllene also displayed strong antioxidant effects. Additionally, β-caryophyllene exhibited selective anti-proliferative effects against colorectal cancer cells (IC50 19 µM). The results also showed that β-caryophyllene induces apoptosis via nuclear condensation and fragmentation pathways including disruption of mitochondrial membrane potential. Further, β-caryophyllene demonstrated potent inhibition against clonogenicity, migration, invasion and spheroid formation in colon cancer cells. These results prompt us to state that β-caryophyllene is the active principle responsible for the selective anticancer and antimicrobial activities of A. crassnia. β-Caryophyllene has great potential to be further developed as a promising chemotherapeutic agent against colorectal malignancies.
    Matched MeSH terms: Anti-Infective Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links