Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Kamarudin NH, Jalil AA, Triwahyono S, Artika V, Salleh NF, Karim AH, et al.
    J Colloid Interface Sci, 2014 May 1;421:6-13.
    PMID: 24594025 DOI: 10.1016/j.jcis.2014.01.034
    Mesoporous silica nanoparticles (MSNs) were synthesized with variable microwave power in the range of 100-450 W, and the resulting enhancement of MSN crystal growth was evaluated for the adsorption and release of ibuprofen. X-ray diffraction (XRD) revealed that the MSN prepared under the highest microwave power (MSN450) produced the most crystallized and prominent mesoporous structure. Enhancement of the crystal growth improved the hexagonal order and range of silica, which led to greater surface area, pore width and pore volume. MSN450 exhibited higher ibuprofen adsorption (98.3 mg/g), followed by MSN300(81.3 mg/g) and MSN100(74.1 mg/g), confirming that more crystallized MSN demonstrated higher adsorptivity toward ibuprofen. Significantly, MSN450 also contained more hydroxyl groups that provided more adsorption sites. In addition, MSN450 exhibited comparable ibuprofen adsorption with conventionally synthesized MSN, indicating the potential of microwave treatment in the synthesis of related porous materials. In vitro drug release was also investigated with simulated biological fluids and the kinetics was studied under different pH conditions. MSN450 showed the slowest release rate of ibuprofen, followed by MSN300 and MSN100. This was due to the wide pore diameter and longer range of silica order of the MSN450. Ibuprofen release from MSN450 at pH 5 and 7 was found to obey a zero-order kinetic model, while release at pH 2 followed the Kosmeyer-Peppas model.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  2. Rezaee M, Basri M, Rahman RN, Salleh AB, Chaibakhsh N, Karjiban RA
    Int J Nanomedicine, 2014;9:539-48.
    PMID: 24531324 DOI: 10.2147/IJN.S49616
    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%-80%, w/w) and oil and surfactant (O/S) ratio (0.17-1.33), as well as high-shear emulsification conditions, mixing rate (300-3,000 rpm) and mixing time (5-30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R(2) ) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  3. Kittappa S, Cui M, Ramalingam M, Ibrahim S, Khim J, Yoon Y, et al.
    PLoS One, 2015;10(7):e0130253.
    PMID: 26161510 DOI: 10.1371/journal.pone.0130253
    Mesoporous silica materials (MSMs) were synthesized economically using silica (SiO2) as a precursor via a modified alkaline fusion method. The MSM prepared at 500°C (MSM-500) had the highest surface area, pore size, and volume, and the results of isotherms and the kinetics of ibuprofen (IBP) removal indicated that MSM-500 had the highest sorption capacity and fastest removal speed vs. SBA-15 and zeolite. Compared with commercial granular activated carbon (GAC), MSM-500 had a ~100 times higher sorption rate at neutral pH. IBP uptake by MSM-500 was thermodynamically favorable at room temperature, which was interpreted as indicating relatively weak bonding because the entropy (∆adsS, -0.07 J mol(-1) K(-1)) was much smaller. Five times recycling tests revealed that MSM-500 had 83-87% recovery efficiencies and slower uptake speeds due to slight deformation of the outer pore structure. In the IBP delivery test, MSM-500 drug loading was 41%, higher than the reported value of SBA-15 (31%). The in vitro release of IBP was faster, almost 100%, reaching equilibrium within a few hours, indicating its effective loading and unloading characteristics. A cost analysis study revealed that the MSM was ~10-70 times cheaper than any other mesoporous silica material for the removal or delivery of IBP.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  4. Bukhari NI, Zafar A, Shamsi Wu, Bashir MA, Mirza AA
    Therapie, 2005 Mar-Apr;60(2):167-73.
    PMID: 15969319
    AIM: The bioequivalence of aspirin from two enteric-coated brands, Nu-seals and Loprin, identified as the reference (R) and test (T) products, respectively, was assessed.

    METHODS: A two-period randomised crossover design with a washout interval of 15 days was used in this study. The study results were determined in 16 healthy volunteers, all males with ages ranging from 19-28 (23.33 +/- 3.74) years and bodyweights of 52-92 (65.89 +/- 11.39) kg. After oral ingestion of 150mg of the either brand with 200 mL of water, serial blood samples were obtained over a period of 24 hours. Plasma, harvested from blood was analysed for the concentration of salicylic acid, a deacetylated metabolite of aspirin, by a validated high performance liquid chromatography (HPLC) method. Pharmacokinetic parameters were determined for both formulations by an interactive computer-assisted PK II procedure. A general linear model for repeated measures and 90% confidence intervals (CI) was employed to assess the sequence of treatment effects and to exclude differences between the parameters due to the product and period of administration, respectively.

    RESULTS: The observed 90% CI ratios (Loprin/Nu-seals) for peak concentration, time to reach the peak and area under the plasma-concentration time curve from zero to infinity of 1.03,1.08; 1.04,1.05 and 1.01,1.15, respectively, were within the bioequivalence range (0.80,1.25) stipulated by the US Food and Drug Administration.

    CONCLUSION: On the basis of the findings, the test (Loprin) and reference drug (Nu-seals) were deemed bioequivalent.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  5. Ahmad U, Sohail M, Ahmad M, Minhas MU, Khan S, Hussain Z, et al.
    Int J Biol Macromol, 2019 May 15;129:233-245.
    PMID: 30738157 DOI: 10.1016/j.ijbiomac.2019.02.031
    Oral drug delivery is natural, most acceptable and desirable route for nearly all drugs, but many drugs like NSAIDs when delivered by this route cause gastrointestinal irritation, gastric bleeding, ulcers, and many undesirable effects which limits their usage by oral delivery. Moreover, it is almost impossible to control the release of a drug in a targeted location in body. We developed thermo-responsive chitosan-co-poly(N-isopropyl-acrylamide) injectable hydrogel as an alternative for the gastro-protective and controlled delivery of loxoprofen sodium as a model drug. A free radical polymerization technique was used to synthesize thermo-responsive hydrogel by cross-linking chitosan HCl with NIPAAM using glutaraldehyde as cross-linker. Confirmation of crosslinked hydrogel structure was done by Fourier transform infrared spectra (FTIR). The thermal stability of hydrogel was confirmed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The scanning electron microscopy (SEM) was performed to evaluate the structural morphology of cross-linked hydrogel. To evaluate the rheological behavior of hydrogel with increasing temperature, rheological study was performed. Swelling and in vitro drug release studies were carried out under various temperature and pH conditions. The swelling study revealed that maximum swelling was observed at low pH (pH 1.2) and low temperature (25 °C) compared to the high range of pH and temperature and it resulted in quick release of the drug. The high range of pH (7.4) and temperature (37 °C) however caused controlled release of the drug. The in vivo evaluation of the developed hydrogel in rabbits demonstrated the controlled release behavior of fabricated system.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  6. Jarrar QB, Hakim MN, Zakaria ZA, Cheema MS, Moshawih S
    Ultrastruct Pathol, 2020 Jan 02;44(1):130-140.
    PMID: 31967489 DOI: 10.1080/01913123.2020.1717705
    Mefenamic acid (MFA) treatment is associated with a number of cellular effects that potentiate the incidence of renal toxicity. The aim of this study is to investigate the potential ultrastructural alterations induced by various preparations of MFA (free MFA, MFA-Tween 80 liposomes, and MFA-DDC liposomes) on the renal tissues. Sprague-Dawley rats were subjected to a daily dose of MFA preparations for 28 days. Renal biopsies from all groups of rats under study were processed for transmission electron microscopic examination. The findings revealed that MFA preparations induced various ultrastructural alterations including mitochondrial injury, nuclear and lysosomal alterations, tubular cells steatosis, apoptotic activity, autophagy, and nucleophagy. These alterations were more clear in rats received free MFA, and MFA-Tween 80 liposomes than those received MFA-DDC liposomes. It is concluded that MFA-DDC liposomes are less potential to induce renal damage than free MFA and MFA-Tween 80 liposomes. Thus, MFA-DDC liposomes may offer an advantage of safe drug delivery.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
  7. Saravanan M, Bhaskar K, Maharajan G, Pillai KS
    J Drug Target, 2011 Feb;19(2):96-103.
    PMID: 20380621 DOI: 10.3109/10611861003733979
    We have previously reported on the targeting of diclofenac sodium in joint inflammation using gelatin magnetic microspheres. To overcome complications in the administration of magnetic microspheres and achieve higher targeting efficiency, the present work focuses on the formulation of gelatin microspheres for intra-articular administration. Drug-loaded microspheres were prepared by the emulsification/cross-linking method, characterized by drug loading, size distribution, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), gas chromatography, and in vitro release studies. The targeting efficiency of microspheres was studied in vivo in rabbits. The microspheres showed drug loading of 9.8, 18.3, and 26.7% w/w with an average size range of 37-46 µm, depending upon the drug-polymer ratio. They were spherical in nature and free from surface drug as evidenced by the SEM photographs. FT-IR, DSC, and XRD revealed the absence of drug-polymer interaction and amorphous nature of entrapped drug. Gas chromatography confirms the absences of residual glutaraldehyde. The formulated microspheres could prolong the drug release up to 30 days in vitro. About 81.2 and 43.7% of administered drug in the microspheres were recovered from the target joint after 1 and 7 days of postintra-articular injection, respectively, revealing good targeting efficiency.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  8. Lim SS, Tan PC, Sockalingam JK, Omar SZ
    Aust N Z J Obstet Gynaecol, 2008 Feb;48(1):71-7.
    PMID: 18275575 DOI: 10.1111/j.1479-828X.2007.00808.x
    To compare oral celecoxib with oral diclofenac as pain reliever after perineal repair following normal vaginal birth.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  9. Rao AS, Cardosa M, Inbasegaran K
    Anaesth Intensive Care, 2000 Feb;28(1):22-6.
    PMID: 10701031
    In a double-blind, placebo-controlled clinical trial (power of 80% to detect a 30% reduction in morphine consumption, P < 0.05), we have determined that the administration of two doses of intravenous ketoprofen 100 mg, one at the end of surgery and the second 12 hours postoperatively, was associated with a significant reduction in morphine consumption at eight (P = 0.028), 12 (P = 0.013) and 24 hours (P = 0.013) but not four hours (P = 0.065) postoperatively, as compared to placebo, when assessed by patient-controlled analgesia. There was no difference between the groups in pain scores or in the incidence of nausea and vomiting. One patient in the placebo group suffered from excessive sedation while one patient from the ketoprofen group suffered from transient oliguric renal failure. There were no other adverse effects. The results of this study show that ketoprofen does provide a morphine-sparing effect in the management of postoperative pain after abdominal surgery.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
  10. Billa N, Yuen KH, Khader MA, Omar A
    Int J Pharm, 2000 May 15;201(1):109-20.
    PMID: 10867269
    A xanthan gum matrix controlled release tablet formulation containing diclofenac sodium was evaluated in vitro and was found to release the drug at a uniform rate. The gastrointestinal transit behaviour of the formulation as determined by gamma scintigraphy, using healthy male volunteers under fasted and fed conditions, indicated that gastric emptying was delayed with food intake. In contrast, the small intestinal transit remained practically unchanged under both food statuses. Therefore, the delay in caecal arrival observed in the fed state can be attributed to the delay in gastric emptying. Rate of diclofenac sodium absorption was generally higher in the fed state compared to the fasted state, however the total amount absorbed under both food statuses remained practically the same. The rate of in vivo dissolution of the drug in the fed state was faster compared to that in the fasted state. Thus, at the time of caecal arrival, in vivo dissolution was complete in the fed state, unlike in the fasted state, where almost 60% of the drug was delivered to the colon.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
  11. Somchit N, Sanat F, Gan EH, Shahrin IA, Zuraini A
    Singapore Med J, 2004 Nov;45(11):530-2.
    PMID: 15510325
    Non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat musculoskeletal disorders, inflammation and to control pain. Virtually all NSAIDs are capable of producing liver injury ranging from mild reversible elevation of liver enzymes to severe hepatic necrosis.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
  12. Goh JZ, Tang SN, Chiong HS, Yong YK, Zuraini A, Hakim MN
    Int J Nanomedicine, 2015;10:297-303.
    PMID: 25678786 DOI: 10.2147/IJN.S75545
    Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall-Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall-Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect was achieved at 56.7% with 20 mg/kg liposome-encapsulated diclofenac, and the lowest effect was shown with 0 mg/kg liposome formulation of 8.89%. The present study suggests that liposome-encapsulated diclofenac exhibits higher antinociceptive efficacy in a dose-dependent manner in comparison with free-form diclofenac.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
  13. Abdulkarim MF, Abdullah GZ, Chitneni M, Salman IM, Ameer OZ, Yam MF, et al.
    Int J Nanomedicine, 2010 Nov 04;5:915-24.
    PMID: 21116332 DOI: 10.2147/IJN.S13305
    INTRODUCTION: During recent years, there has been growing interest in use of topical vehicle systems to assist in drug permeation through the skin. Drugs of interest are usually those that are problematic when given orally, such as piroxicam, a highly effective anti-inflammatory, anti-pyretic, and analgesic, but with the adverse effect of causing gastrointestinal ulcers. The present study investigated the in vitro and in vivo pharmacodynamic activity of a newly synthesized palm oil esters (POEs)-based nanocream containing piroxicam for topical delivery.

    METHODS: A ratio of 25:37:38 of POEs: external phase: surfactants (Tween 80:Span 20, in a ratio 80:20), respectively was selected as the basic composition for the production of a nanocream with ideal properties. Various nanocreams were prepared using phosphate-buffered saline as the external phase at three different pH values. The abilities of these formulae to deliver piroxicam were assessed in vitro using a Franz diffusion cell fitted with a cellulose acetate membrane and full thickness rat skin. These formulae were also evaluated in vivo by comparing their anti-inflammatory and analgesic activities with those of the currently marketed gel.

    RESULTS: After eight hours, nearly 100% of drug was transferred through the artificial membrane from the prepared formula F3 (phosphate-buffered saline at pH 7.4 as the external phase) and the marketed gel. The steady-state flux through rat skin of all formulae tested was higher than that of the marketed gel. Pharmacodynamically, nanocream formula F3 exhibited the highest anti- inflammatory and analgesic effects as compared with the other formulae.

    CONCLUSION: The nanocream containing the newly synthesized POEs was successful for trans-dermal delivery of piroxicam.

    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  14. Yam MF, Asmawi MZ, Basir R
    J Med Food, 2008 Jun;11(2):362-8.
    PMID: 18598181 DOI: 10.1089/jmf.2006.065
    Anti-inflammatory and analgesic activities of a standardized Orthosiphon stamineus methanol:water (50:50 vol/vol) leaf extract (SEOS) were evaluated in animal models. Oral administration of SEOS at doses of 500 and 1,000 mg/kg significantly reduced the hind paw edema in rats at 3 and 5 hours after carrageenan administration (P < .01 and P < .01; P < .01 and P < .05, respectively). SEOS (1,000 mg/kg, p.o.) also produced significant (P < .05) analgesic activity in both the acetic acid-induced writhing test and the formalin-induced licking test (late phase) in mice and rats, respectively. However, SEOS showed no effect on the tail flick and hot plate tests in mice. The results of the present study support the proposal that O. stamineus has anti-inflammatory and non-narcotic analgesic activities. These findings justify the traditional use of the plant for treating pain and inflammation.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  15. Rao SK, Rao PS
    Med J Malaysia, 2005 Dec;60(5):560-2.
    PMID: 16515105
    Post Arthroscopic intra-articular analgesia is a better method to avoid post-operative pain after arthroscopic surgery, thus avoiding the adverse effects of systemic analgesics. In this prospective randomized double blind study conducted on 90 patients, 30 patients in group A received 20 ml of intra-articular saline, 30 patients in Group B received 10 ml of intra-articular saline and 10 ml of 0.25% bupivacaine and 30 patients in Group C received 10 ml of 0.25% bupivacaine, 1 ml (30 mg) of ketorolac and 9 ml of saline intra-articularly. Ambulatory status, duration of analgesia and requirement for supplemented analgesia were compared in these three groups. Patients receiving this intra-articular analgesic combination of bupivacaine and ketorolac required significantly less supplemental postoperative analgesics. This combination significantly prolonged the duration of analgesia. Patients receiving this combination of drugs for intra-articular analgesia ambulated earlier.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  16. Mani V, Ramasamy K, Abdul Majeed AB
    Food Funct, 2013 Apr 25;4(4):557-67.
    PMID: 23360913 DOI: 10.1039/c3fo30356j
    The fresh leaves of Murraya koenigii are often added to various dishes in Asian countries due to the delicious taste and flavour that they impart. In the present study, the effect of the total alkaloidal extract from Murraya koenigii leaves (MKA) with respect to anti-inflammatory, analgesic and anti-ulcerogenic effects were evaluated using different experimental animal models. Oral supplementation of MKA at 10, 20 and 40 mg kg(-1) body weight successfully and dose-dependently reduced the formation of oedema induced by carrageenan, histamine and serotonin as well as formaldehyde-induced arthritis. In addition, the extract (10, 20 and 40 mg kg(-1), p.o.) attenuated the writhing responses induced by an intraperitoneal injection of acetic acid and late phase of pain response induced by a subplantar injection of formalin in mice. MKA at higher doses (20 and 40 mg kg(-1), p.o) reduced the early phase response induced by formalin as well as reaction time on hot plate models. Interestingly, there was no ulcer score with the ulcerogenic effect of MKA. Moreover, all the doses of MKA (10, 20 and 40 mg kg(-1), p.o) showed promising anti-ulcerogenic activity with protection against acute gastric ulcers induced by ethanol plus hydrochloric acid and aspirin models in a dose dependent manner.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*
  17. Yap PR, Goh KL
    Curr Pharm Des, 2015;21(35):5073-81.
    PMID: 26369685
    Non-steroidal anti-inflammatory drugs (NSAIDs) are the most prescribed group of drugs in the world. They are used primarily for pain relief in chronic inflammatory joint disease and act by inhibiting enzymes COX1 and COX2 and ultimately preventing the production of active prostanoids which are required for the innate inflammatory pathway. The use of NSAIDs have been associated with the development of gastrointestinal (GI) symptoms ranging from simple dyspepsia to life threatening GI bleeds and perforations. The definition of dyspepsia has evolved over the years and this has hampered accurate studies on the prevalence of dyspepsia as different studies used varying criteria to define dyspepsia. It is now known that NSAIDs significantly increase the risk of dyspepsia.The risk of developing peptic ulcer disease vary with specific NSAIDs and dosages but there is no correlation between the symptoms of dyspepsia and underlying peptic ulcers. The pathogenesis of dyspepsia with NSAIDs is not completely understood. Peptic ulceration alone is not able to account for the majority of dyspepsia symptoms encountered by NSAIDs users. Erosive oesophagitis secondary to NSAIDs may be contributing factor to the prevalence of dyspepsia in NSAIDs users. Altered gut permeability and changes in gastric mechanosensory function due to NSAIDs may also be a contributory factor. Management of NSAID induced dyspepsia is involves a multipronged approach. Drug avoidance if possible would be ideal. Other options include using the lowest effective dose, changing to an NSAIDs with a safer GI risk profile, avoiding concurrent use with other NSAIDs or if the patient has a previous history of peptic ulcer disease, and co-prescribing with anti-secretory medications such as proton pump inhibitors. Eradication of Helicobacter pylori has a protective role against developing peptic ulcers and may also improve symptoms of NSAIDs induced dyspepsia.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
  18. Segasothy M, Chin GL, Sia KK, Zulfiqar A, Samad SA
    Br J Rheumatol, 1995 Feb;34(2):162-5.
    PMID: 7704463
    We determined the consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and the prevalence of chronic renal impairment and renal papillary necrosis (RPN) in patients with various types of arthritis. Ninety-four patients with chronic arthritis who had consumed more than 1000 capsules and/or tablets of NSAIDs were studied. Renal profiles and radiological investigations such as intravenous urogram (IVU), ultrasonography (US) and computed tomography (CT) were performed to look for evidence of RPN. Twelve patients did not complete the study. Ten of the 82 patients who had completed the study (12.2%) had radiologic evidence of RPN. Five out of 53 patients (9.4%) with rheumatoid arthritis, three out of 11 patients (27.3%) with gouty arthritis and two out of seven patients (28.6%) with osteoarthritis had RPN. Renal impairment (serum creatinine levels of 125-451 mumol/l) was found in 20 patients (24.4%). The patients had consumed 1000-26,300 capsules and/or tablets over a period ranging from 1 yr to more than 30 yr. Patients with chronic arthritis who consume excessive amount of NSAIDs are at risk of developing RPN and chronic renal impairment.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
  19. Rahman A, Segasothy M, Samad SA, Zulfiqar A, Rani M
    Headache, 1993 Sep;33(8):442-5.
    PMID: 8262786
    The pattern of analgesic use, abuse and incidence of analgesic-associated nephropathy in 79 patients with chronic headache was studied. Sixty-eight of these patients had migraine. Most patients had consumed a combination of analgesics (81%) while 19% had taken single analgesics for their headache. Nonsteroidal anti-inflammatory drugs were the most commonly used analgesics (96.2%) followed by paracetamol (70.9%) and aspirin, phenacetin and caffeine compounds (5.1%). Mefenamic acid was the commonest nonsteroidal anti-inflammatory drug consumed (97.4%). Analgesic abuse which was defined as a minimum total of 1 kg of analgesics such as paracetamol or aspirin, phenacetin and caffeine compounds or 400 capsules/tablets of nonsteroidal anti-inflammatory drugs was noted in 65 patients. Nonsteroidal anti-inflammatory drugs were the most commonly abused analgesics (89.2%) followed by paracetamol (38.5%). Forty-five of the 65 analgesic abusers had an intravenous urogram or ultrasound performed and renal papillary necrosis was documented in one patient. Three (4.6%) of the analgesic abusers had mildly raised serum creatinine levels. Mild proteinuria of less than 1 gm/litre was present in 27.7% of abusers. In conclusion, although analgesic use and abuse is common in patients with chronic headache, the short term incidence of analgesic-associated nephropathy (2.2%) and renal impairment (4.6%) was low. Prolonged observations will be necessary to ascertain the safety of these drugs for long term use.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
  20. Abubakar K, Muhammad Mailafiya M, Danmaigoro A, Musa Chiroma S, Abdul Rahim EB, Abu Bakar Zakaria MZ
    Biomolecules, 2019 09 06;9(9).
    PMID: 31489882 DOI: 10.3390/biom9090453
    Lead (Pb) is a toxic, environmental heavy metal that induces serious clinical defects in all organs, with the nervous system being its primary target. Curcumin is the main active constituent of turmeric rhizome (Curcuma longa) with strong antioxidant and anti-inflammatory properties. This study is aimed at evaluating the therapeutic potentials of curcumin on Pb-induced neurotoxicity. Thirty-six male Sprague Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and 6 rats in each of groups, i.e., the lead-treated group (LTG) (50 mg/kg lead acetate for four weeks), recovery group (RC) (50 mg/kg lead acetate for four weeks), treatment group 1 (Cur100) (50 mg/kg lead acetate for four weeks, followed by 100 mg/kg curcumin for four weeks) and treatment group 2 (Cur200) (50 mg/kg lead acetate for four weeks, followed by 200 mg/kg curcumin for four weeks). All experimental groups received oral treatment via orogastric tube on alternate days. Motor function was assessed using a horizontal bar method. The cerebellar concentration of Pb was evaluated using ICP-MS technique. Pb-administered rats showed a significant decrease in motor scores and Superoxide Dismutase (SOD) activity with increased Malondialdehyde (MDA) levels. In addition, a marked increase in cerebellar Pb concentration and alterations in the histological architecture of the cerebellar cortex layers were recorded. However, treatment with curcumin improved the motor score, reduced Pb concentration in the cerebellum, and ameliorated the markers of oxidative stress, as well as restored the histological architecture of the cerebellum. The results of this study suggest that curcumin attenuates Pb-induced neurotoxicity via inhibition of oxidative stress and chelating activity.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links