Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Siddiqui R, Kulsoom H, Lalani S, Khan NA
    Exp. Parasitol., 2016 Jul;166:94-6.
    PMID: 27055361 DOI: 10.1016/j.exppara.2016.04.001
    Balamuthia mandrillaris is a protist pathogen that can cause encephalitis with a mortality rate of more than 95%. Early diagnosis followed by aggressive treatment is a pre-requisite for successful prognosis. Current methods for identifying this organism rely on culture and microscopy, antibody-based methods using animals, or involve the use of molecular tools that are expensive. Here, we describe the isolation of antibody fragments that can be used for the unequivocal identification of B. mandrillaris. B. mandrillaris-specific antibody fragments were isolated from a bacteriophage antibody display library. Individual clones were studied by enzyme-linked immunosorbent assay, and immunofluorescence. Four antibody clones showed specific binding to B. mandrillaris. The usefulness of phage antibody display technology as a diagnostic tool for isolating antibody fragments against B. mandrillaris antigens and studying their biological role(s) is discussed further.
    Matched MeSH terms: Antigens, Protozoan/immunology
  2. Latif BM, Jakubek EB
    Trop Biomed, 2008 Dec;25(3):225-31.
    PMID: 19287361
    Flourescent antibody test (FAT) was applied to determine the cross-reactivities of monoclonal (mAb), polyclonal (pAb) antibodies to Neospora, Toxoplasma and Cryptosporidium and antisera from cattle naturally infected with Neospora canium against antigens from a number of sources. Both mAb and pAb to Neospora reacted strongly (FAT titre up to 2560) with the homologous antigens and demonstrated weak titre (80) or no reaction with both Toxoplasma and Cryptosporidium antigens. Also mAb and pAb to Toxoplasma gondii reacted at titres of 80 - 640 with homologous antigens and at titres of 10-40 with N. caninum. No cross-reactions with either mAb or pAb antibodies to N. caninum and T. gondii were observed with Cryptosporidium parvum. The same results were observed with C. parvum mAb when tested with both N. caninum and T. gondii antigens. Sera from cattle naturally infected with N. caninum had titres ranging from 80- 640 with N. caninum antigens, and 10- 40 with T. gondii and C. parvum antigens. At low dilutions, the complete surfaces of Neospora and Toxoplasma parasites were fluorescent, while in higher dilutions only dotted fluorescence appeared on the apical complex. These results indicated the presence of cross-reactivity between Neospora and Toxoplasma but not with Cryptosporidium. Accordingly the recommended cut-off antibody titre for diagnosis of neosporosis is 80.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  3. Rahmah N, Anuar AK
    Biochem. Biophys. Res. Commun., 1992 Aug 31;187(1):294-8.
    PMID: 1520310
    C57BL/6 mice were orally infected with different doses of cysts of ME49 strain of Toxoplasma gondii to produce groups of acutely and chronically infected mice. Sera were obtained at different periods post-infection. SDS-PAGE was ran with excretory/secretory antigens of ME49 and RH strains of T. gondii, followed by Western blot analyses using the above sera and anti- IgA, IgM, IgG as conjugates. The SDS-PAGE profiles of the two antigens were similar. However the antigenic bands showed variations in all blots, most evidently in IgA blots of chronic sera. IgG blots showed greatest similarities in reactive bands. In IgM blots, more common bands were shown in chronic sera than in acute sera. Variations and similarities in prominence of some bands and time of their appearance were also noted, especially in IgM and IgG blots of chronic sera. Thus antigenic variations and similarities are present in excretory/secretory products of different strains of T. gondii.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  4. Rahmah N, Khairul Anuar A
    Biochem. Biophys. Res. Commun., 1992 Dec 15;189(2):640-4.
    PMID: 1472034
    Mice were chronically infected with cysts of ME49 strain of Toxoplasma gondii. At different periods post-infection, their spleens were removed and single cell suspensions were made. Lymphocyte transformation experiments were performed on the lymphocyte suspensions using three different kinds of antigens of ME49 strain of T. gondii, namely soluble, excretory/secretory and cystic forms. The results showed that the pattern of lymphocyte responsiveness was dependent on the kind of antigen employed for induction of the blastogenesis. Using soluble and cystic forms of the antigen, different periods of lymphocyte suppression and lymphocyte proliferation were demonstrated. However, with the use of excretory/secretory antigen, no significant suppression of lymphocyte stimulation was noted throughout the course of infection. Thus excretory/secretory antigen may be the best form of antigen for stimulation of the cell-mediated immune response and hence it appears to be a good candidate for vaccine in toxoplasmosis.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  5. Foo A, Carter R, Lambros C, Graves P, Quakyi I, Targett GA, et al.
    Am. J. Trop. Med. Hyg., 1991 Jun;44(6):623-31.
    PMID: 1713424
    Monoclonal antibodies (MAbs) directed against different epitope regions on three sexual stage-specific gamete surface proteins of Plasmodium falciparum, Pfs 25, Pfs 230, and Pfs 48/45, were used to study the genetic diversity of these epitopes among fresh isolates of P. falciparum from Malaysia, using immunofluorescence microscopy (IFA). Among 45 Malaysian isolates, one epitope of Pfs 25, designated region I, showed evidence of variable reactivity with MAbs among different isolates; the Pfs 25 epitope, region II, was universally recognized by MAbs in all isolates. Two apparently distinct epitope regions of Pfs 230 were defined by MAbs, one of which was universally recognized by MAbs among the 45 isolates; the other was conserved in all but three isolates. The epitope regions of gamete-surface protein Pfs 48/45, designated regions I, IIa, IIb, IIc, III, and IV, were examined for reactivity by IFA in 33 isolates. Epitope regions I, IIb, III, and IV were conserved in all isolates; regions IIa and IIc existed in variant forms.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  6. Maspi N, Ghaffarifar F, Sharifi Z, Dalimi A, Khademi SZ
    Malays J Pathol, 2017 Dec;39(3):267-275.
    PMID: 29279589
    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (p<0.05). IFN-γ/ Interleukin (IL)-4 and IgG2a/IgG1 ratios demonstrated the highest IFN-γ and IgG2a levels in the group receiving LACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (p<0.05). In addition, there was a significant reduction in mean lesion size of LACK-TSA and TSA groups than LACK group after challenge (p<0.05). In the present study, DNA immunization promoted Th1 immune response and confirmed the previous observations on immunogenicity of LACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  7. Cho SJ, Lee J, Lee HJ, Jo HY, Sinniah M, Kim HY, et al.
    Int. J. Biol. Sci., 2016;12(7):824-35.
    PMID: 27313496 DOI: 10.7150/ijbs.14408
    Rapid diagnostic tests (RDTs) can detect anti-malaria antibodies in human blood. As they can detect parasite infection at the low parasite density, they are useful in endemic areas where light infection and/or re-infection of parasites are common. Thus, malaria antibody tests can be used for screening bloods in blood banks to prevent transfusion-transmitted malaria (TTM), an emerging problem in malaria endemic areas. However, only a few malaria antibody tests are available in the microwell-based assay format and these are not suitable for field application. A novel malaria antibody (Ab)-based RDT using a differential diagnostic marker for falciparum and vivax malaria was developed as a suitable high-throughput assay that is sensitive and practical for blood screening. The marker, merozoite surface protein 1 (MSP1) was discovered by generation of a Plasmodium-specific network and the hierarchical organization of modularity in the network. Clinical evaluation revealed that the novel Malaria Pf/Pv Ab RDT shows improved sensitivity (98%) and specificity (99.7%) compared with the performance of a commercial kit, SD BioLine Malaria P.f/P.v (95.1% sensitivity and 99.1% specificity). The novel Malaria Pf/Pv Ab RDT has potential for use as a cost-effective blood-screening tool for malaria and in turn, reduces TTM risk in endemic areas.
    Matched MeSH terms: Antigens, Protozoan/immunology
  8. Vulliez-Le Normand B, Faber BW, Saul FA, van der Eijk M, Thomas AW, Singh B, et al.
    PLoS ONE, 2015;10(4):e0123567.
    PMID: 25886591 DOI: 10.1371/journal.pone.0123567
    The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host's humoral response to AMA1.
    Matched MeSH terms: Antigens, Protozoan/immunology
  9. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    Parasit Vectors, 2015;8:315.
    PMID: 26062975 DOI: 10.1186/s13071-015-0932-0
    Serological investigation remains the primary approach to achieve satisfactory results in Toxoplasma gondii identification. However, the accuracy of the native antigen used in the current diagnostic kits has proven to be insufficient as well as difficult to standardize, so significant efforts have been made to find alternative reagents as capture antigens. Consequently, multi-epitope peptides are promising diagnostic markers, with the potential for improving the accuracy of diagnostic kits. In this study, we described a simple, inexpensive and improved strategy to acquire such diagnostic markers. The study was aimed at producing novel synthetic protein consisting of multiple immunodominant epitopes of several T. gondii antigens.
    Matched MeSH terms: Antigens, Protozoan/immunology
  10. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct. Biol., 2012;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.
    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.
    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  11. Amerizadeh A, Idris ZM, Khoo BY, Kotresha D, Yunus MH, Karim IZ, et al.
    Microb. Pathog., 2013 Jan;54:60-6.
    PMID: 23044055 DOI: 10.1016/j.micpath.2012.09.006
    Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. Chronically-infected individuals with a compromised immune system are at risk for reactivation of the disease. In-vivo induced antigen technology (IVIAT) is a promising method for the identification of antigens expressed in-vivo. The aim of the present study was to apply IVIAT to identify antigens which are expressed in-vivo during T. gondii infection using sera from individuals with chronic toxoplasmosis. Forty serum samples were pooled, pre-adsorped against three different preparations of antigens, from each in-vitro grown T. gondii and Escherichia coli XLBlue MRF', and then used to screen a T. gondii cDNA expression library. Sequencing of DNA inserts from positive clones showed eight open reading frames with high homology to T. gondii genes. Expression analysis using quantitative real-time PCR showed that SAG1-related sequence 3 (SRS3) and two hypothetical genes were up-regulated in-vivo relative to their expression levels in-vitro. These three proteins also showed high sensitivity and specificity when tested with individual serum samples. Five other proteins namely M16 domain peptidase, microneme protein, elongation factor 1-alpha, pre-mRNA-splicing factor and small nuclear ribonucleoprotein F had lower RNA expression in-vivo as compared to in-vitro. SRS3 and the two hypothetical proteins warrant further investigation into their roles in the pathogenesis of toxoplasmosis.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  12. Wong WK, Tan ZN, Othman N, Lim BH, Mohamed Z, Olivos Garcia A, et al.
    Clin. Vaccine Immunol., 2011 Nov;18(11):1913-7.
    PMID: 21918120 DOI: 10.1128/CVI.05356-11
    Serodiagnosis of amoebiasis remains the preferred method for diagnosis of amoebic liver abscess (ALA). However, the commercially available kits are problematic in areas of endemicity due to the persistently high background antibody titers. Human serum samples (n = 38) from patients with ALA who live in areas of endemicity were collected from Hospital Universiti Sains Malaysia during the period of 2008 to 2010. Western blots using excretory-secretory antigen (ESA) collected from axenically grown Entamoeba histolytica were probed with the above serum samples. Seven antigenic proteins of ESA with various reactivities were identified, i.e., 152 kDa, 131 kDa, 123 kDa, 110 kDa, 100 kDa, 82 kDa, and 76 kDa. However, only the 152-kDa and 110-kDa proteins showed sensitivities above 80% in the Western blot analysis. All the antigenic proteins showed undetectable cross-reactivity when probed with healthy human serum samples (n = 30) and serum samples from other infections (n = 33). From the matrix-assisted laser desorption ionization-two-stage time of flight (MALDI-TOF/TOF) analysis, the proteins were identified as heavy subunits of E. histolytica lectin and E. histolytica pyruvate phosphate dikinase, respectively. Use of the E. histolytica lectin for diagnosis of ALA has been well reported by researchers and is being used in commercialized kits. However, this is the first report on the potential use of pyruvate phosphate dikinase for diagnosis of ALA; thus, this molecule merits further evaluation on its diagnostic value using a larger panel of serum samples.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  13. Kotresha D, Noordin R
    APMIS, 2010 Aug;118(8):529-42.
    PMID: 20666734 DOI: 10.1111/j.1600-0463.2010.02629.x
    Toxoplasma gondii is an important human pathogen with a worldwide distribution. It is primarily of medical importance for pregnant women and immunocompromised patients. Primary infection of the former is often associated with fetal infection, which can lead to abortion or severe neonatal malformation. Immunocompromised patients are at risk of contracting the severe form of the disease that may be fatal. Thus, detection of T. gondii infection with high sensitivity and specificity is crucial in the management of the disease. Toxoplasmosis is generally diagnosed by demonstrating specific immunoglobulin M (IgM) and IgG antibodies to toxoplasma antigens in the patient's serum sample. Most of the commercially available tests use T. gondii native antigens and display wide variations in test accuracy. Recombinant antigens have great potential as diagnostic reagents for use in assays to detect toxoplasmosis. Thus in this review, we address recent advances in the use of Toxoplasma recombinant proteins for serodiagnosis of toxoplasmosis.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  14. Fong MY, Lau YL, Zulqarnain M
    Biotechnol. Lett., 2008 Apr;30(4):611-8.
    PMID: 18043869
    The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.
    Matched MeSH terms: Antigens, Protozoan/immunology
  15. Kano S, Onda T, Matsumoto Y, Buchachart K, Krudsood S, Looareesuwan S, et al.
    PMID: 9886125
    It was reported that a 47kDa antigenic polypeptide of Plasmodium falciparum had been strongly presented by the sera from 1) imported Japanese malaria patients with severe symptoms and 2) symptomatic and parasitemic inhabitants in endemic areas in the Sudan, Malaysia and the Philippines. In the present study, we observed the reactivity of the sera from falciparum malaria patients who had been hospitalized in the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, and compared the antibody response against the 47kDa antigenic polypeptide according to the severity of the patients. It was observed that antibodies to this molecule were more commonly shared in sera from severer patients, although the IFAT titers against the whole P. falciparum parasite antigen were lower in the group, which suggested that this antibody against the 47kDa molecule was playing a specific role at a severe stage of the infection. Determination of the immunological features of the antigenic molecules of parasites by this type of sero-epidemiological study will provide a new assay system for evaluation of immune status of individuals in different severity and suggest a way of vaccine development.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  16. Gordon DM, Davis DR, Lee M, Lambros C, Harrison BA, Samuel R, et al.
    Am. J. Trop. Med. Hyg., 1991 Jul;45(1):49-56.
    PMID: 1867348
    Two hundred and seventy-five Orang Asli volunteers living in nine villages in the Pos Legap Valley of Perak State, peninsular Malaysia, participated in a prospective study designed to characterize the epidemiological, parasitological, and entomological characteristics of Plasmodium falciparum, P. vivax, and P. malariae malaria transmission. Prevalence rates for the three plasmodial species at initiation of the study ranged from 56% in the 0-4-year-old age group to 0% in individuals over the age of 40. Entomological surveys were conducted, enabling us to determine mosquito salivary gland-positive rates and entomological inoculation rates of 1.2 infectious mosquito bites per person per month for P. falciparum, 2.4 for P. vivax, and 0.3 for P. malariae. Cumulative incidence rates over the 16 weeks of the study, following radical cure of all volunteers, were 22.5% for P. falciparum, 12.7% for P. vivax, and 1.5% for P. malariae. The median baseline antibody titer against the immunodominant repetitive B cell epitope of P. falciparum or P. vivax circumsporozoite protein was significantly higher for volunteers who did not become parasitemic. Volunteers were selected for further study if they had evidence of being challenged with P. falciparum sporozoites during the study, based on a two-fold or greater increase in antibody titer against the immunodominant repetitive B cell epitope of the circumsporozoite protein. Resistance to infection was seen in six of 10 individuals who had high (greater than 25 OD units) baseline ELISA titers, compared with only three of 24 individuals who had low baseline ELISA titers (chi 2 P less than 0.02). A similar analysis for P. vivax did not show a significant correlation.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  17. Teh AY, Amerizadeh A, Osman S, Yunus MH, Noordin R
    Pathog Glob Health, ;110(7-8):277-286.
    PMID: 27697019
    The IgG avidity assay is an important tool in the management of suspected toxoplasmosis in pregnant women. This study aimed to produce new Toxoplasma gondii recombinant proteins and to assess their usefulness in an IgG avidity assay. Toxoplasma positive and negative serum samples were used, the former were categorized into low (LGA) and high (HGA) IgG avidity samples. Immunoblots were performed on 30 T. gondii cDNA clones to determine the reactivity and IgG avidity to the expressed proteins. Two of the clones were found to have diagnostic potential and were analyzed further; AG12b encoded T. gondii apical complex lysine methyltransferase (AKMT) protein and AG18 encoded T. gondii forkhead-associated (FHA) domain-containing protein. The His-tagged recombinant proteins, rAG12b and rAG18, were expressed and tested with LGA and HGA samples using an IgG avidity western blot and ELISA. With the IgG avidity western blot, rAG12b identified 86.4% of LGA and 90.9% of HGA samples, whereas rAG18 identified 81.8% of both LGA and HGA samples. With the IgG avidity ELISA, rAG12b identified 86.4% of both LGA and HGA samples, whereas rAG18 identified 77.3% of LGA and 86.4% of HGA serum samples. This study showed that the recombinant antigens were able to differentiate low avidity and high avidity serum samples, suggesting that they are potential candidates for use in the Toxoplasma IgG avidity assay.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  18. Wong WK, Foo PC, Olivos-Garcia A, Noordin R, Mohamed Z, Othman N, et al.
    Acta Trop., 2017 Aug;172:208-212.
    PMID: 28506795 DOI: 10.1016/j.actatropica.2017.05.017
    Crude soluble antigen (CSA) produced from Entamoeba histolytica trophozoite is conventionally used for serodiagnosis of invasive amoebiasis. However, high background seropositivities by CSA-assay in endemic areas complicate the interpretation of positive result in clinical settings. Instead, incorporating a second assay which indicates active or recent infection into the routine amoebic serology could possibly complement the limitations of CSA-assay. Hence, the present study aimed to evaluate the diagnostic efficacies of indirect ELISAs using CSA and excretory-secretory antigen (ESA) for serodiagnosis of amoebic liver abscess (ALA). Reference standard for diagnosis of ALA at Hospital Universiti Sains Malaysia is based on clinical presentation, radiological imaging and positive indirect haemagglutination assay (titer ≥256). Five groups of human serum samples collected from the hospital included Group I - ALA diagnosed by the reference standard and pus aspirate analysis using real-time PCR (n=10), Group II - ALA diagnosed by the reference standard only (n=41), Group III - healthy control (n=45), Group IV - other diseases control (n=51) and Group V - other infectious diseases control (n=31). For serodiagnosis of ALA serum samples (Group I and II), CSA-ELISA showed sensitivities of 100% for both groups, while ESA-ELISA showed sensitivities of 100% and 88%, respectively. For serodiagnosis of non-ALA serum samples (Group III, IV and V), CSA-ELISA showed specificities of 91%, 75% and 100%, respectively; while ESA-ELISA showed specificities of 96%, 98% and 100%, respectively. Indirect ELISAs using CSA and ESA have shown distinct strength for serodiagnosis of ALA, in terms of sensitivity and specificity, respectively. In conclusion, parallel analysis by both assays improved the overall efficacies of amoebic serology as compared to either single assay.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  19. Zainudin NS, Othman N, Muhi J, Abdu Sani AA, Noordin R
    Am. J. Trop. Med. Hyg., 2015 Dec;93(6):1268-73.
    PMID: 26392156 DOI: 10.4269/ajtmh.15-0333
    This study was performed to identify circulating Plasmodium falciparum proteins in patient serum, which may be useful as diagnostic markers. Depletion of highly abundant proteins from each pooled serum sample obtained from P. falciparum-infected patients and healthy individuals was performed using the Proteoseek Antibody-Based Albumin/IgG Removal Kit (Thermo Scientific, Rockford, IL). In analysis 1, the depleted serum was analyzed directly by NanoLC-MS/MS. In analysis 2, the depleted serum was separated by two-dimensional electrophoresis followed by western blot analysis. Subsequently, the selected band was analyzed by NanoLC-MS/MS. The result of analysis 1 revealed the presence of two mature erythrocyte surface antigen (MESA) proteins and chloroquine resistance transporter protein (PfCRT). In addition, analysis 2 revealed an antigenic 75-kDa band when the membrane was probed with purified IgG from the pooled serum obtained from P. falciparum-infected patients. MS/MS analysis of this protein band revealed fragments of P. falciparum MESA proteins. Thus, in this study, two different analyses revealed the presence of Plasmodium MESA protein in pooled serum from malaria patients; thus, this protein should be further investigated to determine its usefulness as a diagnostic marker.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  20. Cheong FW, Fong MY, Lau YL, Mahmud R
    Malar. J., 2013;12:454.
    PMID: 24354660 DOI: 10.1186/1475-2875-12-454
    Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-1(42) (MSP-1(42)) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-1(42).
    Matched MeSH terms: Antigens, Protozoan/immunology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links