Displaying publications 1 - 20 of 1202 in total

Abstract:
Sort:
  1. Salam S, Harneti D, Maharani R, Nurlelasari, Safari A, Hidayat AT, et al.
    Phytochemistry, 2021 Jul;187:112759.
    PMID: 33839518 DOI: 10.1016/j.phytochem.2021.112759
    Eleven undescribed triterpenoids (pentandrucines A to K) were isolated from the n-hexane extract of the stem bark of Chisocheton pentandrus (Blanco) Merr. These comprised ten undescribed dammarane-type triterpenoids and one undescribed apotirucallane-type triterpenoid. Additionally, two dammarane-type triterpenoids, four apotirucallane-type triterpenoids and two tirucallane-type triterpenoids were also isolated. The chemical structures of pentandrucine A-K, were fully elucidated using 1D and 2D-NMR, and high resolution MS. All of the compounds were evaluated for cytotoxic activity against MCF-7 breast cancer cells in vitro. Melianodiol proved to be the most active with an IC50 of 16.84 μM comparing favourably with Cisplatin (13.2 μM).
    Matched MeSH terms: Antineoplastic Agents*
  2. Li HY, Lin HC, Huang BJ, Kai Lo AZ, Saidin S, Lai CH
    Langmuir, 2020 09 29;36(38):11374-11382.
    PMID: 32902993 DOI: 10.1021/acs.langmuir.0c02297
    Recently, studies on the development and investigation of carbohydrate-functionalized silica nanoparticles (NPs) and their biomedicine applications such as cell-specific targeting and bioimaging has been carried out extensively. Since the number of breast cancer patients has been growing in recent years, potential NPs were being studied in this project for targeting breast cancer cells. Mannose receptors can be found on the surface of MDA-MB-231, which is a kind of human breast cancer cell line. Therefore, we decorated a cyanine 3 fluorescent dye (Cy3) and mannosides on the surface of silica NPs for the purpose of imaging and targeting. Galactoside was also introduced onto the surface of silica NPs acting as a control sample. Various sizes of silica NPs were synthesized by using different amounts of ammonium to investigate the effect of the size of NPs on the cellular uptake rate. The physical properties of these NPs were characterized by scanning electron microscope, dynamic light scattering, and their zeta potential. Cellular experiments demonstrated that mannoside-modified NPs can be uptaken by MDA-MB-231. From the experiment, we found out that the best cellular uptake rate of nanoparticle size is about 250 nm. The MTT assay showed that Man@Cy3SiO2NPs are not cytotoxic, indicating they may have the potential for biomedical applications.
    Matched MeSH terms: Antineoplastic Agents*
  3. Hutagaol RP, Harneti D, Safari A, Hidayat AT, Supratman U, Awang K, et al.
    J Asian Nat Prod Res, 2021 Aug;23(8):781-788.
    PMID: 32536210 DOI: 10.1080/10286020.2020.1776704
    A seco-apotirucallane-type triterpenoid, namely angustifolianin (1), along with three dammarane-type triterpenoids, (20S, 24S)-epoxy-dammarane-3β,25-diol (2), 3-epi-cabraleahydroxylactone (3), and cabralealactone (4), were isolated from the stem bark of Aglaia angustifolia Miq. The Chemical structure of the new compounds was elucidated on the basis of spectroscopic data. All of the compounds were evaluated for their cytotoxic effects against MCF-7 breast cancer cells. Among those compounds, angustifolianin (1) showed strongest cytotoxic activity with an IC50 value of 50.5 μg/ml.
    Matched MeSH terms: Antineoplastic Agents*
  4. Yeo CI, Ooi KK, Tiekink ERT
    Molecules, 2018 Jun 11;23(6).
    PMID: 29891764 DOI: 10.3390/molecules23061410
    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*; Antineoplastic Agents/chemistry
  5. Rajendran D, Oon CE
    Life Sci, 2024 Dec 01;358:123121.
    PMID: 39389340 DOI: 10.1016/j.lfs.2024.123121
    Colorectal cancer (CRC) remains a leading cause of death globally despite the improvements in cancer treatment. Autophagy is an evolutionarily conserved lysosomal-dependent degradation pathway that is critical in maintaining cellular homeostasis. However, in cancer, autophagy may have conflicting functions in preventing early tumour formation versus the maintenance of advanced-stage tumours. Defective autophagy has a broad and dynamic effect not just on cancer cells, but also on the tumour microenvironment which influences tumour progression and response to treatment. To add to the layer of complexity, somatic mutations in CRC including tumour protein p53 (TP53), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), Kirsten rat sarcoma viral oncogene homolog (KRAS), and phosphatase and tensin homolog (PTEN) can render chemoresistance by promoting a pro-survival advantage through autophagy. Recent studies have also reported autophagy-related cell deaths that are distinct from classical autophagy by employing parts of the autophagic machinery, which impacts strategies for autophagy regulation in cancer therapy. This review discusses the molecular processes of autophagy in the evolution of CRC and its role in the tumour microenvironment, as well as prospective therapeutic methods based on autophagy suppression or promotion. It also highlights clinical trials using autophagy modulators for treating CRC, underscoring the importance of autophagy regulation in CRC therapy.
    Matched MeSH terms: Antineoplastic Agents/pharmacology; Antineoplastic Agents/therapeutic use
  6. Barathan M, Vellasamy KM, Mariappan V, Venkatraman G, Vadivelu J
    Appl Biochem Biotechnol, 2024 Jul;196(7):4644-4660.
    PMID: 37773580 DOI: 10.1007/s12010-023-04734-0
    Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
    Matched MeSH terms: Antineoplastic Agents/pharmacology; Antineoplastic Agents/therapeutic use; Antineoplastic Agents/chemistry
  7. Jadhav P, Bhuyar P, Misnon II, Rahim MHA, Roslan R
    Int J Biol Macromol, 2024 Sep;276(Pt 2):134061.
    PMID: 39043289 DOI: 10.1016/j.ijbiomac.2024.134061
    The conversion of lignin into bioactive compounds through selective organic synthesis methods represents a promising frontier in the pursuit of sustainable raw materials and green chemistry. This review explores the versatility of lignin-derived bioactive compounds, ranging from their application in drug discovery to their role in the development of biodegradable materials. Despite notable advancements, the synthesis routes and yields of highly bioactive molecules from lignin still require further exploration and improvement. This review provides an in-depth examination of the progress made in understanding the complex structure of lignin and developing innovative approaches to exploit its potential. Specifically, the types of lignins covered include softwood Kraft lignin, hardwood organosolv lignin, and soda lignin. This work is divided into three parts: first, the transformation of lignin into bioactive molecules with chemically active centres and functionalised hydroxyl groups through depolymerisation; second, kinetic modelling techniques essential for understanding the chemical kinetics of lignin and enabling significant scaling up in the conversion of organic molecules; third, efficient catalytic pathways for synthesising molecules with anticancer and antibacterial properties. In conclusion, this comprehensive review spurs further investigations into lignin-derived bioactive compounds, their applications, and the advancement of sustainable processes.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis; Antineoplastic Agents/pharmacology; Antineoplastic Agents/chemistry
  8. Neoh CK
    Med J Malaysia, 1992 Mar;47(1):86-8.
    PMID: 1387458
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  9. Katja DG, Hilmayanti E, Nurlelasari, Mayanti T, Harneti D, Maharani R, et al.
    J Asian Nat Prod Res, 2023 Jan;25(1):36-43.
    PMID: 35128999 DOI: 10.1080/10286020.2022.2032678
    Two new azadirone-type limonoids, namely lasiocarpine A (1) and lasiocarpine B (2) were isolated from the fruit of Chisocheton lasiocarpus along with three known limonoids (3-5). UV, IR, one- and two- dimensional NMR, and mass spectrometry were used to determine the chemical structure of the isolated compounds. Furthermore, their cytotoxic activity against breast cancer cell line MCF-7 was evaluated using PrestoBlue reagent. From these compounds, lasiocarpine A (1) showed the strongest activity with an IC50 value of 43.38 μM.
    Matched MeSH terms: Antineoplastic Agents*
  10. Hussein HA, Abdullah MA
    Mar Drugs, 2020 Jul 09;18(7).
    PMID: 32660006 DOI: 10.3390/md18070356
    Cancer is the main cause of death worldwide, so the discovery of new and effective therapeutic agents must be urgently addressed. Diatoms are rich in minerals and secondary metabolites such as saturated and unsaturated fatty acids, esters, acyl lipids, sterols, proteins, and flavonoids. These bioactive compounds have been reported as potent anti-cancer, anti-oxidant and anti-bacterial agents. Diatoms are unicellular photosynthetic organisms, which are important in the biogeochemical circulation of silica, nitrogen, and carbon, attributable to their short growth-cycle and high yield. The biosilica of diatoms is potentially effective as a carrier for targeted drug delivery in cancer therapy due to its high surface area, nano-porosity, bio-compatibility, and bio-degradability. In vivo studies have shown no significant symptoms of tissue damage in animal models, suggesting the suitability of a diatoms-based system as a safe nanocarrier in nano-medicine applications. This review presents an overview of diatoms' microalgae possessing anti-cancer activities and the potential role of the diatoms and biosilica in the delivery of anticancer drugs. Diatoms-based antibodies and vitamin B12 as drug carriers are also elaborated.
    Matched MeSH terms: Antineoplastic Agents/chemistry*
  11. Mokhtar N, Karunakaran T, Santhanam R, Abu Bakar MH, Jong VYM
    Nat Prod Res, 2024;38(5):873-878.
    PMID: 37005001 DOI: 10.1080/14786419.2023.2196075
    Genus Calophyllum is well-known for its phenolic constituents, especially coumarins, which have shown to have a wide range of significant biological activities. In this study, four known phenolic constituents and two triterpenoids have been isolated from the stem bark of Calophyllum lanigerum. The compounds were two pyranochromanone acids are known as caloteysmannic acid (1), isocalolongic acid (2), a simple dihydroxyxanthone, namely euxanthone (3), one coumarin named calanone (4), and two common triterpenoids, friedelin (5), and stigmasterol (6). Chromanone acids were reported for the first time in this Calophyllum species. Cytotoxic evaluations were carried out on n-hexane extract (87.14 ± 2.04 µg/mL; 81.46 ± 2.42 µg/mL) followed by the chromanone acids (1 [79.96 ± 2.39 µM; 83.41 ± 3.39 µM] & 2 [57.88 ± 2.34; 53.04 ± 3.18 µM]) against two cancerous cell lines, MDA-MB-231 and MG-63 cell lines, respectively. The results showed that all tested samples exhibited moderate cytotoxicity.
    Matched MeSH terms: Antineoplastic Agents*
  12. Chua RW, Song KP, Ting ASY
    Lett Appl Microbiol, 2024 Mar 01;77(3).
    PMID: 37563083 DOI: 10.1093/lambio/ovad096
    This study reports the antioxidant potential and L-asparaginase production of culturable fungal endophytes from Dendrobium orchids in Malaysia. Twenty-nine isolates were screened using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to determine their free radical scavenging activities and antioxidant capacity (IC50 and AEAC). L-asparaginase production of fungal endophytes was detected by the qualitative plate assay, and the enzyme activities estimated via the Nesslerization method. All 29 endophytic isolates exhibited various degrees of radical scavenging activities (35.37%-77.23%), with Fusarium fujikuroi (D1) identified as having the highest antioxidant capacity (IC50 6.097 mg/mL) and the highest AEAC value (11.55  mg/g). For L-asparaginase production, the majority of the isolates (89.66%) showed positive results, especially among the culturable species of Fusarium, Trichoderma, and Daldinia. Most Fusarium spp. were able to produce L-asparaginase (80.77%), but the highest L-asparaginase activity was detected in Daldinia eschscholtzii (D14) with 2.128 units/mL. Results from this study highlighted the potential of endophytic fungi from medicinal orchids (Dendrobium sp.) as natural sources of bioactive compounds to be developed into novel antioxidants and anticancer drugs.
    Matched MeSH terms: Antineoplastic Agents*
  13. Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2023 Nov;396(11):2769-2792.
    PMID: 37219615 DOI: 10.1007/s00210-023-02522-5
    Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Antineoplastic Agents*
  14. Ahmad FB, Ghaffari Moghaddam M, Basri M, Abdul Rahman MB
    Biosci Biotechnol Biochem, 2010;74(5):1025-9.
    PMID: 20460723
    An easy and efficient strategy to prepare betulinic acid esters with various anhydrides was used by the enzymatic synthesis method. It involves lipase-catalyzed acylation of betulinic acid with anhydrides as acylating agents in organic solvent. Lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435) was employed as a biocatalyst. Several 3-O-acyl-betulinic acid derivatives were successfully obtained by this procedure. The anticancer activity of betulinic acid and its 3-O-acylated derivatives were then evaluated in vitro against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. 3-O-glutaryl-betulinic acid, 3-O-acetyl-betulinic acid, and 3-O-succinyl-betulinic acid showed IC(50)<10 microg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In an ovarian cancer cell line, all betulinic acid derivatives prepared showed weaker cytotoxicity than betulinic acid.
    Matched MeSH terms: Antineoplastic Agents/chemical synthesis*; Antineoplastic Agents/metabolism; Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry
  15. Talei D, Valdiani A, Puad MA
    Biotechnol Appl Biochem, 2013 Sep-Oct;60(5):521-6.
    PMID: 23725097 DOI: 10.1002/bab.1126
    Proteomic analysis of plants relies on high yields of pure protein. In plants, protein extraction and purification present a great challenge due to accumulation of a large amount of interfering substances, including polysaccharides, polyphenols, and secondary metabolites. Therefore, it is necessary to modify the extraction protocols. A study was conducted to compare four protein extraction and precipitation methods for proteomic analysis. The results showed significant differences in protein content among the four methods. The chloroform-trichloroacetic acid-acetone method using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer provided the best results in terms of protein content, pellets, spot resolution, and intensity of unique spots detected. An overall of 83 qualitative or quantitative significant differential spots were found among the four methods. Based on the 2-DE gel map, the method is expected to benefit the development of high-level proteomic and biochemical studies of Andrographis paniculata, which may also be applied to other recalcitrant medicinal plant tissues.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*; Antineoplastic Agents, Phytogenic/chemistry
  16. Aspollah Sukari M, Wah TS, Saad SM, Rashid NY, Rahmani M, Lajis NH, et al.
    Nat Prod Res, 2010 May;24(9):838-45.
    PMID: 20461629 DOI: 10.1080/14786410903052951
    Curcuma ochrorhiza ('temu putih') and C. heyneana ('temu giring') are two Zingiberaceous species which are commonly used in traditional medicine in Malaysia and Indonesia. Phytochemical investigations on these Curcuma species have resulted in the isolation of six sesquiterpenes, namely zerumbone (1), furanodienone (2), zederone (3), oxycurcumenol epoxide (4), curcumenol (5) and isocurcumenol (6), along with phytosterols stigmasterol and alpha-sitosterol. Compounds 1 and 2 were obtained for the first time for C. ochrorhiza while 4 was new to C. heyneana. The hexane extract of C. ochrorhiza and sesquiterpenes 1 and 3 showed very strong cytotoxicity activity against T-acute lymphoblastic leukaemia cells (CEM-SS), with IC(50) values of 6.0, 0.6 and 1.6 microg mL(-1), respectively. Meanwhile, constituents from C. heyneana (4-6) demonstrated moderate inhibition against CEM-SS in cytotoxic assay, with IC(50) values of 11.9, 12.6 and 13.3 microg mL(-1), respectively. The crude extracts and sesquiterpenes isolated were moderately active against certain bacteria tested in antimicrobial screening.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry*
  17. Awang K, Hadi AH, Saidi N, Mukhtar MR, Morita H, Litaudon M
    Fitoterapia, 2008 Jun;79(4):308-10.
    PMID: 18313862 DOI: 10.1016/j.fitote.2007.11.025
    The bark of Cryptocarya crassinervia provided two new phenantrene alkaloids, 2-hydroxyatherosperminine (1) and N-demethyl-2-methoxyatherosperminine (2).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry
  18. Wong FC, Tan ST, Chai TT
    Crit Rev Food Sci Nutr, 2016 Jul 29;56 Suppl 1:S162-70.
    PMID: 26193174 DOI: 10.1080/10408398.2015.1045967
    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents.
    Matched MeSH terms: Antineoplastic Agents/analysis; Antineoplastic Agents/pharmacology
  19. Bukhari SN, Jantan I, Seyed MA
    Anticancer Agents Med Chem, 2015;15(6):681-93.
    PMID: 25783963
    The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*; Antineoplastic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links