Displaying publications 1 - 20 of 196 in total

Abstract:
Sort:
  1. Chan DP
    Med J Malaya, 1965 Sep;20(1):29-35.
    PMID: 4221408
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  2. Yeo CI, Ooi KK, Tiekink ERT
    Molecules, 2018 Jun 11;23(6).
    PMID: 29891764 DOI: 10.3390/molecules23061410
    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  3. Chai AWY, Tan AC, Cheong SC
    Sci Rep, 2021 12 14;11(1):23933.
    PMID: 34907286 DOI: 10.1038/s41598-021-03418-1
    Effective treatment options for head and neck squamous cell carcinoma (HNSCC) are currently lacking. We exploited the drug response and genomic data of the 28 HNSCC cell lines, screened with 4,518 compounds, from the PRISM repurposing dataset to uncover repurposing drug candidates for HNSCC. A total of 886 active compounds, comprising of 418 targeted cancer, 404 non-oncology, and 64 chemotherapy compounds were identified for HNSCC. Top classes of mechanism of action amongst targeted cancer compounds included PI3K/AKT/MTOR, EGFR, and HDAC inhibitors. We have shortlisted 36 compounds with enriched killing activities for repurposing in HNSCC. The integrative analysis confirmed that the average expression of EGFR ligands (AREG, EREG, HBEGF, TGFA, and EPGN) is associated with osimertinib sensitivity. Novel putative biomarkers of response including those involved in immune signalling and cell cycle were found to be associated with sensitivity and resistance to MEK inhibitors respectively. We have also developed an RShiny webpage facilitating interactive visualization to fuel further hypothesis generation for drug repurposing in HNSCC. Our study provides a rich reference database of HNSCC drug sensitivity profiles, affording an opportunity to explore potential biomarkers of response in prioritized drug candidates. Our approach could also reveal insights for drug repurposing in other cancers.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  4. Mirakholi M, Mahmoudi T, Heidari M
    Acta Med Iran, 2013;51(12):823-9.
    PMID: 24442535
    In the retinoblastoma research, it is of great interest to identify molecular markers associated with the genetics of tumorigenesis. microRNAs (miRNAs) are small non-coding RNA molecules that play a regulatory role in many crucial cellular pathways such as differentiation, cell cycle progression, and apoptosis. A body of evidences showed dysregulation of miRNAs in tumor biology and many diseases. They potentially play a significant role in tumorigenesis processes and have been the subject of research in many types of cancers including retinal tumorigenesis. miRNA expression profiling was found to be associated with tumor development, progression and treatment. These associations demonstrate the putative applications of miRNAs in monitoring of different aspect of tumors consisting diagnostic, prognostic and therapeutic. Herein, we review the current literature concerning to the study of miRNA target recognition, function to tumorigenesis and treatment in retinoblastoma. Identification the specific miRNA biomarkers associated with retinoblastoma cancer may help to establish new therapeutic approaches for salvage affected eyes in patients.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  5. Ming LJ, Yin AC
    Nat Prod Commun, 2013 Mar;8(3):415-8.
    PMID: 23678825
    Glycyrrhizic acid (GA), belonging to a class of triterpenes, is a conjugate of two molecules, namely glucuronic acid and glycyrrhetinic acid. It is naturally extracted from the roots of licorice plants. With its more common uses in the confectionery and cosmetics industry, GA extends its applications as a herbal medicine for a wide range of ailments. At low appropriate doses, anti-inflammatory, anti-diabetic, antioxidant, anti-tumor, antimicrobial and anti-viral properties have been reported by researchers worldwide. This review summarizes the effects of GA on metabolic syndrome, tumorigenesis, microbes and viruses, oxidative stress, and inflammation, as well as the reported side effects of the drug.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  6. Soon SS, Lim HY, Lopes G, Ahn J, Hu M, Ibrahim HM, et al.
    Asian Pac J Cancer Prev, 2013;14(4):2159-65.
    PMID: 23725106
    Cancer registries help to establish and maintain cancer incidence reporting systems, serve as a resource for investigation of cancer and its causes, and provide information for planning and evaluation of preventive and control programs. However, their wider role in directly enhancing oncology drug access has not been fully explored. We examined the value of cancer registries in oncology drug access in the Asia-Pacific region on three levels: (1) specific registry variable types; (2) macroscopic strategies on the national level; and (3) a regional cancer registry network. Using literature search and proceedings from an expert forum, this paper covers recent cancer registry developments in eight economies in the Asia-Pacific region - Australia, China, Hong Kong, Malaysia, Singapore, South Korea, Taiwan, and Thailand - and the ways they can contribute to oncology drug access. Specific registry variables relating to demographics, tumor characteristics, initial treatment plans, prognostic markers, risk factors, and mortality help to anticipate drug needs, identify high-priority research area and design access programs. On a national level, linking registry data with clinical, drug safety, financial, or drug utilization databases allows analyses of associations between utilization and outcomes. Concurrent efforts should also be channeled into developing and implementing data integrity and stewardship policies, and providing clear avenues to make data available. Less mature registry systems can employ modeling techniques and ad-hoc surveys while increasing coverage. Beyond local settings, a cancer registry network for the Asia-Pacific region would offer cross-learning and research opportunities that can exert leverage through the experiences and capabilities of a highly diverse region.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  7. Wong RS
    PMID: 21943236 DOI: 10.1186/1756-9966-30-87
    Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  8. Jeyamogan S, Khan NA, Siddiqui R
    Arch Med Res, 2021 02;52(2):131-142.
    PMID: 33423803 DOI: 10.1016/j.arcmed.2020.10.016
    The number of cancer cases worldwide in terms of morbidity and mortality is a serious concern, despite the presence of therapeutic interventions and supportive care. Limitations in the current available diagnosis methods and treatments methods may contribute to the increase in cancer mortality. Theranostics, is a novel approach that has opened avenues for the simultaneous precise diagnosis and treatment for cancer patients. Although still in the early development stage, theranostic agents such as quantum dots, radioisotopes, liposomes and plasmonic nanobubbles can be bound to anticancer drugs, cancer cell markers and imaging agents, with the support of available imaging techniques, provide the potential to facilitate diagnosis, treatment and management of cancer patients. Herein, we discuss the potential benefits of several theranostic tools for the management of cancer. Specifically, quantum dots, radio-labelled isotopes, liposomes and plasmonic nanobubbles coupled with targeting agents and/or anticancer molecules and imaging agents as theranostic agents are deliberated upon in this review. Overall, the use of theranostic agents shows promise in cancer management. Nevertheless, intensive research is required to realize these expectations.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  9. Chowdhury S, Yusof F, Salim WW, Sulaiman N, Faruck MO
    J. Photochem. Photobiol. B, Biol., 2016 Nov;164:151-159.
    PMID: 27683958 DOI: 10.1016/j.jphotobiol.2016.09.013
    Cancer is a complicated disease for which finding a cure presents challenges. In recent decades, new ways to treat cancer are being sought; one being nanomedicine, which manipulates nanoparticles to target a cancer and release drugs directly to the cancer cells. A number of cancer treatments based on nanomedicine are under way and mostly are in preclinical trials owing to challenges in administration, safety, and effectiveness. One alternative method for drug delivery is the use of photovoltaic nanoparticles, which has the potential to deliver drugs via light activation. The concepts are based on standard photovoltaic cell that holds opposite charges on its surfaces and releases drugs when charge intensity or polarity changes upon photo-stimulation such as from a laser source or sunlight. This review will cover some recent progress in cancer treatment using nanoparticles, including photovoltaic nanoparticles.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  10. Pandey M, Choudhury H, Yeun OC, Yin HM, Lynn TW, Tine CLY, et al.
    Curr Pharm Biotechnol, 2018;19(4):276-292.
    PMID: 29874994 DOI: 10.2174/1389201019666180605125234
    BACKGROUND: Targeting chemotherapeutic agents to the tumor tissues and achieving accumulation with ideal release behavior for desired therapy requires an ideal treatment strategy to inhibit division of rapid growing cancerous cells and as an outcome improve patient's quality of life. However, majority of the available anticancer therapies are well known for their systemic toxicities and multidrug resistance.

    METHODS: Application of nanotechnology in medicine have perceived a great evolution during past few decades. Nanoemulsion, submicron sized thermodynamically stable distribution of two immiscible liquids, has gained extensive importance as a nanocarrier to improve chemotherapies seeking to overcome the limitations of drug solubilization, improving systemic delivery of the chemotherapeutics to the site of action to achieve a promising inhibitory in tumor growth profile with reduced systemic toxicity.

    RESULTS AND CONCLUSION: This review has focused on potential application of nanoemulsion in the translational research and its role in chemotherapy using oral, parenteral and transdermal route to enhance systemic availability of poorly soluble drug. In summary, nanoemulsion is a multifunctional nanocarrier capable of enhancing drug delivery potential of cytotoxic agents, thereby, can improve the outcomes of cancer treatment by increasing the life-span of the patient and quality of life, however, further clinical research and characterization of interactive reactions should need to be explored.

    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  11. Sheikh BY, Sarker MMR, Kamarudin MNA, Ismail A
    Biomed Pharmacother, 2017 Nov;95:614-648.
    PMID: 28888208 DOI: 10.1016/j.biopha.2017.08.043
    Amounting scientific evidences have revealed the antitumor, antimetastatic, antiangiogenic, antiproliferative, chemopreventive and neo-adjuvant efficacy of Prophetic Medicine in various in vitro, in vivo and clinical cancer models. Prophetic Medicine includes plants, dietary materials or spices that were used as remedy recipes and nutrition by the great Prophet Mohammed (peace be upon him) to treat various ailments. Prophetic medicine is the total authentic Hadith narrated by the Prophet (PBUH) in relation to medicine, whether Qur'anic verses or honourable Prophetic Hadith. The ability of functional foods from Prophetic Medicine to modulate various signalling pathways and multidrug resistance conferring proteins with low side-effects exemplify their great potential as neo-adjuvants and/or chemotherapeutics. The present review aims to provide the collective in vitro, in vivo, clinical and epidemiology information of Prophetic Medicines, and their bioactive constituents and molecular mechanisms as potential functional foods for the management of cancer.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  12. Jaganathan SK, Mondhe D, Wani ZA, Supriyanto E
    ScientificWorldJournal, 2014;2014:912051.
    PMID: 25506620 DOI: 10.1155/2014/912051
    People affected with leukemia are on the rise and several strategies were employed to thwart this deadly disease. Recent decade of research focuses on phenolic constituents as a tool for combating various inflammatory, cancer, and cardiac diseases. Our research showed honey and its phenolic constituents as crusaders against cancer. In this work, we explored the antileukemic activity of selected honey and one of its phenolic constituent eugenol against L1210 leukemia animal model. Results of this experiment showed that the selected honey samples as well as eugenol after intraperitoneal injection could not increase the median survival time (MST) of animals. Further, there was only slight marginal increase in the %T/C values of honey and eugenol treated groups. The number of phenolics present in the honey may not be a prime factor to promote antileukemic effect since there was no difference in the MST of two different honeys tested. This study limits the use of selected honey and eugenol against leukemia animal model.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  13. Jaganathan SK, Balaji A, Vellayappan MV, Asokan MK, Subramanian AP, John AA, et al.
    Anticancer Agents Med Chem, 2015;15(1):48-56.
    PMID: 25052987
    Recent statistics revealed that cancer is one among the main reasons for death throughout the world. Several treatments are available but still there is no cure when it is detected at late stages. One of the treatment modes for cancer is chemotherapy which utilizes anticancer drugs in order to eradicate the cancer cells by apoptosis. Apoptosis is a programmed cell death through which body maintains homeostasis or kills cancer cells by utilizing its cell machinery. Recent researches have concluded that dietary agents have a putative role in instituting apoptosis of cancer cells. Honey, one of the victuals rich in antioxidants, has a long-standing exposure to humans and its role in cancer prevention and treatment is a topic of current interest. Various researchers have been experimenting honey against different cancers and provided valuable insights about the apoptosis induced by the honey. This review will highlight the recent findings of apoptotic mechanism involved in different cancer cells. Further it also reports antitumor activity of honey in some animal models. Hence it is high-time to initiate more preclinical trials as well as clinical experiments which would further add to the knowledge of anticancer nature of honey and also endorse honey as a potential candidate in the war against cancer.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  14. Pandurangan AK, Esa NM
    Asian Pac J Cancer Prev, 2014;15(2):551-60.
    PMID: 24568457
    Colorectal cancer (CRC) is the third most common malignancy and fourth most common cause of cancer mortality worldwide. Untreated chronic inflammation in the intestine ranks among the top three high-risk conditions for colitis-associated colorectal cancer (CAC). Signal Transducer and Activator of Transcription 3 (STAT3) protein is a member of the STAT family of transcription factors often deregulated in CRC. In this review, we try to emphasize the critical role of STAT3 in CAC as well as the crosstalk of STAT3 with inflammatory cytokines, nuclear factor (NF)- κB, PI3K/Akt, Mammalian Target of Rapamycin (mTOR), Notch, Wnt/β-catenin and microRNA (MiR) pathways. STAT3 is considered as a primary drug target to treat CAC in humans and rodents. Also we updated the findings for inhibitors of STAT3 with regard to effeects on tumorigenesis. This review will hopefully provide insights on the use of STAT3 as a therapeutic target in CAC.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  15. Jothy SL, Oon CE, Sasidharan S
    Asian Pac J Cancer Prev, 2014;15(3):1501.
    PMID: 24606490
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  16. Tiong KH, Mah LY, Leong CO
    Apoptosis, 2013 Dec;18(12):1447-68.
    PMID: 23900974 DOI: 10.1007/s10495-013-0886-7
    The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  17. Armania N, Yazan LS, Ismail IS, Foo JB, Tor YS, Ishak N, et al.
    Molecules, 2013;18(11):13320-39.
    PMID: 24172241 DOI: 10.3390/molecules181113320
    The present research was designed to evaluate the anticancer properties of Dillenia suffruticosa extract. Our focus was on the mode of cell death and cell cycle arrest induced in breast cancer cells by the active fractions (designated as D/F4, D/F5 and EA/P2) derived from chromatographic fractionation of D. suffruticosa extracts. The results showed that the active fractions are more cytotoxic towards MCF-7 (estrogen positive breast cancer cells) and MDA-MB-231 (estrogen negative breast cancer cells) as compared to other selected cancer cell lines that included HeLa, A459 and CaOV3. The induction of cell death through apoptosis by the active fractions on the breast cancer cells was confirmed by Annexin V-FITC and PI staining. Cell cycle analysis revealed that D/F4 and EA/P2 induced G2/M phase cell cycle arrest in MCF-7 cells. On the other hand, MDA-MB-231 cells treated with D/F4 and D/F5 accumulated in the sub-G1 phase without cell cycle arrest, suggesting the induction of cell death through apoptosis. The data suggest that the active fractions of D. suffruticosa extract eliminated breast cancer cells through induction of apoptosis and cell cycle arrest. The reason why MCF-7 was more sensitive towards the treatment than MDA-MB-231 remains unclear. This warrants further work, especially on the role of hormones in response towards cytotoxic agents. In addition, more studies on the mechanisms underlying the induction of apoptosis and cell cycle arrest by the plant extract also need to be carried out.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  18. Mae SH, Sofia M, Bolhuis RL, Nooter K, Oostrum RG, Subagus W, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:24-5.
    PMID: 19024965
    The leaves of Nerium indicum Mill. have been utilized traditionally to cure cancer. By Bioassay (BST) guided isolation method, six compounds were isolated from the CHCl3 extract of the leaves. Selectivity of these compounds (in 0.6-12,500 ng/ml) was tested on various human cancer (MCF7, EVSA-T, T47D, H226, IGROV, A498, WIDR, M19, HeLa) and normal (Vero) cells in vitro. Doxorubicin and cysplatin were used as positive controls. The result indicated that NiO2D (5alpha-oleandrin) possessed the best cytotoxic effect on HeLa cells (IC50, 8.38 x10(-6) mM) and NiO2C (16, 17-dehidrodeasetil-5alpha-oleandrin) on A498 cells (IC50, 1.43 x 10(-6) mM). Those two compounds were not cytotoxic to normal cell.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  19. Zulkifli MM, Ibrahim R, Ali AM, Aini I, Jaafar H, Hilda SS, et al.
    Neurol Res, 2009 Feb;31(1):3-10.
    PMID: 18937888 DOI: 10.1179/174313208X325218
    Newcastle disease virus (NDV) is a virus of paramyxovirus family and lately has been studied for the treatment of cancer in human. In this study, we successfully determined the oncolysis potential of NDV vaccine, V4UPM tested on the human glioblastoma multiform cell line (DBTRG.05MG) and human glioblastoma astrocytoma cell line (U-87MG) in vitro and in vivo. The V4UPM strain is a modified V4 strain developed as thermostable feed pellet vaccine for poultry.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  20. Josephine FP, Nissapatorn V
    PMID: 17547079
    We report a 68-year-old Indian man who was referred to the Hematology Unit for investigation for thrombocytopenia, an incidental finding during a pre-operative screening for prostatectomy. Physical examination was unremarkable. There was no splenomegaly, hepatomegaly or lymphadenopathy. Complete blood counts showed normal hemoglobin and total white cell count with moderate thrombocytopenia. Hairy-cell leukemia was diagnosed based on peripheral blood film, bone-marrow aspirate and trephine biopsy findings, supported by immunophenotyping results by flow cytometry. The purpose of this report is to create awareness of this uncommon presentation and to emphasize that a single-lineage cytopenia or absence of splenomegaly does not exclude the diagnosis of hairy-cell leukemia. Careful attention to morphological detail is important for early diagnosis, especially when low percentages of "hairy" cells are present in the peripheral blood and bone marrow. Early diagnosis is important to ensure that patients obtain maximum benefit from the newer therapeutic agents that have greatly improved the prognosis in this rare disorder.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links