Displaying publications 1 - 20 of 1831 in total

Abstract:
Sort:
  1. Yang Y, Aghbashlo M, Gupta VK, Amiri H, Pan J, Tabatabaei M, et al.
    Int J Biol Macromol, 2023 May 01;236:123954.
    PMID: 36898453 DOI: 10.1016/j.ijbiomac.2023.123954
    Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  2. Cheah S, Pung C, Haslaniza H, Sahilah A, Maskat M
    Sains Malaysiana, 2014;43:1907-1913.
    This study was carried out to determine the effects of fermentation on the physicochemical properties and antioxidant activities of noni extract. The analyses carried out included pH value, titratable acidity, total soluble solid (°Brix), total phenolic content (TPC) and free radical scavenging ability (DPPH) involving short (0, 1 and 2 weeks) and long (4, 6, 8, 10 and 12 weeks) period fermentation. For short period fermentation, the results showed that pH value and free radical scavenging ability (DPPH) was significantly (p<0.05) decreased compared with fresh noni extract. The pH value, TPC and scavenging activity of radical DPPH decreased significantly (p<0.05) while titratable acidity increased significantly (p<0.05) for the long period fermentation. The results obtained from this study showed the pH value, titratable acidity, total phenolic content and antioxidant activity were significantly different after fermentation except for total soluble solid. Based on the results, fermentation of noni fruit do not give positive effects on noni extract where fermentation obviously leads to reduction of antioxidant activities.
    Keywords: Antioxidant; fermentation; Morinda citrifolia L.; physicochemical properties
    Matched MeSH terms: Antioxidants*
  3. Nasir NAA, Sadikan MZ, Agarwal R
    Asia Pac J Clin Nutr, 2021 Sep;30(3):537-555.
    PMID: 34587713 DOI: 10.6133/apjcn.202109_30(3).0020
    Tocotrienols have been reported to exert anticancer, anti-inflammatory, antioxidant, cardio-protective and boneprotective effects through modulation of NFκB signalling pathway. The objective of this systematic review is to evaluate available literature showing the effect of tocotrienols on NFκB signalling pathway and identify the potential mechanisms involved. A comprehensive search was conducted using PubMed and SCOPUS databases using the keywords "tocotrienol" and "NFκB" or "nuclear factor kappa b". Main inclusion criteria were English language original articles showing the effect of tocotrienol on NFκB signalling pathway. Fifty-nine articles were selected from the total of 117 articles initially retrieved from the literature search. Modulation of regulatory proteins and genes such as inhibition of farnesyl prenyl transferase were found to be the mechanisms underlying the tocotrienol-induced suppression of NFκB activation.
    Matched MeSH terms: Antioxidants/pharmacology
  4. Apparoo Y, Wei Phan C, Rani Kuppusamy U, Chan EWC
    Brain Res, 2024 Feb 01;1824:148693.
    PMID: 38036238 DOI: 10.1016/j.brainres.2023.148693
    Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through β-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.
    Matched MeSH terms: Antioxidants/metabolism; Antioxidants/pharmacology
  5. Hisam Zamakshshari N, Adewale Ahmed I, Nazil Afiq Nasharuddin M, Syahira Zaharudin N, Mohd Hashim N, Othman R
    Chem Biodivers, 2023 Jun;20(6):e202300111.
    PMID: 37236908 DOI: 10.1002/cbdv.202300111
    The relevance of the lignocellulosic substrate in the cultivation of mushrooms has lent support to the exploration of several lignocellulosic agro wastes. This study was, thus, aimed at the evaluation of durian peel as an alternative substrate for more sustainable mushroom cultivation and climate change mitigation. The secondary metabolites and biological activities of both aqueous and organic mushroom (Pleurotus pulmonarius (Fr.) Quel.) extract cultured on durian peel and rubberwood sawdust substrate were compared using GCMS, LCMS as well as various biological assays (cytotoxicity, antimicrobial and antioxidant activities). Mushroom extracts from durian peel substrates possess remarkable biological activities. The results showed that the aqueous extracts had poor antimicrobial activities. The organic extracts were more active against cancer cells than the aqueous extracts, while the aqueous extracts were more potent as antioxidants than the organic extracts. Overall, the mushroom extract from the durian substrate was the most effective except against A549 and SW948, while the aqueous extract from the durian substrate was the most effective against the A549 cancer cell lines with 29.53±2.39 % inhibition. On the other hand, the organic mushroom extract from the sawdust substrate was the most effective against SW948 with 60.24±2.45 % inhibition. Further studies, however, are needed to elucidate the molecular mechanism of action of P. pulmonarius extracts against cancer cell proliferation and the effect of the substrates on the nutritional composition, secondary metabolites, and other biological activities of P. pulmonarius extracts.
    Matched MeSH terms: Antioxidants/metabolism; Antioxidants/pharmacology
  6. Ilyas Z, Ali Redha A, Wu YS, Ozeer FZ, Aluko RE
    Plant Foods Hum Nutr, 2023 Jun;78(2):233-242.
    PMID: 36947371 DOI: 10.1007/s11130-023-01056-8
    Himanthalia elongata is a brown seaweed containing several nutritional compounds and bioactive substances including antioxidants, dietary fibre, vitamins, fatty acids, amino acids, and macro- and trace- elements. A variety of bioactive compounds including phlorotannins, flavonoids, dietary fucoxanthin, hydroxybenzoic acid, hydroxycinnamic acid, polyphenols and carotenoids are also present in this seaweed. Multiple comparative studies were carried out between different seaweed species, wherein H. elongata was determined to exhibit high antioxidant capacity, total phenolic content, fucose content and potassium concentrations compared to other species. H. elongata extracts have also shown promising anti-hyperglycaemic and neuroprotective activities. H. elongata is being studied for its potential industrial food applications. In new meat product formulations, it lowered sodium content, improved phytochemical and fiber content in beef patties, improved properties of meat gel/emulsion systems, firmer and tougher with improved water and fat binding properties. This narrative review provides a comprehensive overview of the nutritional composition, bioactive properties, and food applications of H. elongata.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  7. Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, et al.
    Oxid Med Cell Longev, 2022;2022:8741787.
    PMID: 36046682 DOI: 10.1155/2022/8741787
    A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
    Matched MeSH terms: Antioxidants/metabolism; Antioxidants/pharmacology; Antioxidants/therapeutic use
  8. Rahmah S, Ahmad Mubbarakh S, Soo Ping K, Subramaniam S
    ScientificWorldJournal, 2015;2015:961793.
    PMID: 25861687 DOI: 10.1155/2015/961793
    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages.
    Matched MeSH terms: Antioxidants/pharmacology*
  9. Kemung HM, Tan LT, Chan KG, Ser HL, Law JW, Lee LH, et al.
    Biomed Res Int, 2020;2020:6402607.
    PMID: 32258133 DOI: 10.1155/2020/6402607
    The mangrove ecosystem of Malaysia remains yet to be fully explored for potential microbes that produce biologically active metabolites. In the present study, a mangrove-derived Streptomyces sp. strain MUSC 14 previously isolated from the state of Pahang, Malaysia Peninsula, was studied for its potential in producing antioxidant metabolites. The identity of Streptomyces sp. strain MUSC14 was consistent with the genotypic and phenotypic characteristics of the Streptomyces genus. The antioxidant potential of Streptomyces sp. strain MUSC 14 was determined through screening of its methanolic extract against sets of antioxidant assays. The results were indicative of Streptomyces sp. strain MUSC 14 displaying strong antioxidant activity against ABTS, DPPH free radicals and metal chelating activity of 62.71 ± 3.30%, 24.71 ± 2.22%, and 55.82 ± 2.35%, respectively. The result of ferric reducing activity measured in terms of dose was equivalent to 2.35-2.45 μg of positive control ascorbic acid. Furthermore, there was a high correlation between the total phenolic content and the antioxidant activities with r = 0.979, r = 0.858, and r = 0.983 representing ABTS, DPPH, and metal chelation, respectively. Overall, the present study suggests that Streptomyces sp. strain MUSC 14 from mangrove forest soil has potential to produce antioxidant metabolites that can be further exploited for therapeutic application.
    Matched MeSH terms: Antioxidants/analysis*
  10. Saleem H, Zengin G, Ahmad I, Htar TT, Naidu R, Mahomoodally MF, et al.
    Food Res Int, 2020 11;137:109651.
    PMID: 33233230 DOI: 10.1016/j.foodres.2020.109651
    Anagallis arvensis (L.) is a wild edible food plant that has been used in folklore as a natural remedy for treating common ailments. This study aimed to explore the biochemical properties and toxicity of methanol (MeOH) and dichloromethane (DCM) extracts of A. arvensis (aerial and root parts). Bioactive contents were assessed spectrophotometrically, and the secondary metabolites were identified by UHPLC-MS analysis. DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelating assays were employed to assess antioxidant activity. Inhibitory potential against key enzymes (α-glucosidase, urease, lipoxygenase (LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE)) were also assessed. MTT assay was employed to test toxicity against SW-480, MDA-MB-231, CaSki, MCF-7, and DU-145 cancer cell lines. Methanolic extracts showed highest phenolic (aerial-MeOH: 27.5 mg GAE/g extract; root-MeOH: 21.17 mg GAE/g extract) and flavonoid (aerial-MeOH: 26.15 mg QE/g extract; root-MeOH: 19.07 mg QE/g extract) contents, and potent antioxidant activities. The aerial-MeOH extract was most potent for DPPH (IC50: 231 ug/mL), ABTS (131.12 mg TE/g extract), FRAP (82.97 mg TE/g extract), and CUPRAC (137.15 mg TE/g extract) antioxidant assays. All extracts were cytotoxic towards tested cancer cells with IC50 values ranging from 12.57 to 294.5 µg/mL and conferred a comparatively strong inhibition against α-glucosidase (aerial-DCM extract showed the highest inhibition against α-glucosidase with IC50 value of 20.97 µg /mL), while aerial extracts were also considerably active against BChE (aerial-MeOH IC50: 224.63 µg /mL), LOX (aerial-DCM IC50: 385.7 µg /mL). Likewise, aerial-MeOH extract was most active against urease enzyme (IC50: 129.72 µg /mL). UHPLC-MS investigation of methanolic extracts showed the existence of important phenolics, flavonoids, and saponins, including methyl gallte, quercetin, lanceoletin, and balanitesin, amongst others. Moreover, principal component analysis (PCA) highlighted the correlation amongst bioactive contents and observed biological activities. A. arvensis extracts could be regarded as a natural source of bioactive antioxidants, enzyme inhibitors and anticancer agents and can be further investigated as a lead source for food and pharmaceutical products. However, further studies to isolate, purify, and to characterize its bioactive phytochemicals are needed.
    Matched MeSH terms: Antioxidants/toxicity
  11. Apparoo Y, Phan CW, Kuppusamy UR, Sabaratnam V
    Exp Gerontol, 2022 Dec;170:111982.
    PMID: 36244584 DOI: 10.1016/j.exger.2022.111982
    Healthy ageing is a crucial process that needs to be highlighted as it affects the quality of lifespan. An increase in oxidative stress along with ageing is the major factor related to the age-associated diseases, especially neurodegenerative disorders. An antioxidant-rich diet has been proven to play a significant role in the ageing process. Targeting ageing mechanisms could be a worthwhile approach to improving health standards. Ergothioneine (EGT), a hydrophilic compound with specific transporter known as OCTN1, has been shown to exert anti-ageing properties. In addition to its antioxidant effect, EGT has been reported to have anti-senescence, anti-inflammatory and anti-neurodegenerative properties. This review aims to define the pivotal role of EGT in major signalling pathways in ageing such as insulin/insulin-like growth factor (IGF) signalling (IIS), sirtuin 6 (SIRT6) and mammalian target of rapamycin complex (mTOR) pathways. The review further discusses evidence of EGT on neurodegeneration in its therapeutic context in various model organisms, providing new insights into improving health. In conclusion, an ergothioneine-rich diet may be beneficial in preventing age-related diseases, resulting in a healthy ageing population.
    Matched MeSH terms: Antioxidants/pharmacology
  12. Ikhsan LN, Chin KY, Ahmad F
    Molecules, 2022 Oct 25;27(21).
    PMID: 36364068 DOI: 10.3390/molecules27217243
    Stingless bee honey (SLBH) has a high moisture content, making it more prone to fermentation and leading to honey spoilage. Dehydration of SLBH after harvest is needed to reduce the moisture content. This review compiles the available data on the dehydration methods for SLBH and their effect on its physicochemical properties. This review discovered the dehydration process of vacuum drying at 60 °C and 5% moisture setting, freeze-drying at −54 °C and 5% moisture setting for 24 h, and using a food dehydrator at 55 °C for 18 h could extract >80% water content in SLBH. As a result, these methods could decrease moisture content to <17% and water activity to <0.6. These will prevent the fermentation process and microorganism growth. The hydroxymethylfurfural (HMF) contents remain within the permissible standard of <40 mg/kg. The total phenolic content increased after dehydration by these methods. Therefore, dehydration of SLBH is recommended to increase its benefits.
    Matched MeSH terms: Antioxidants/analysis
  13. Choo YX, Teh LK, Tan CX
    Molecules, 2022 Dec 30;28(1).
    PMID: 36615507 DOI: 10.3390/molecules28010313
    Sonication is recognized as a potential food processing method to improve the functional properties of fruit juice. This study evaluated the effects of different sonication durations (20, 40, and 60 min) and thermal pasteurization on the nutritional, antioxidant, and microbial properties of noni juice. Fresh noni juice served as the control. The main organic acids detected were malic (57.54−89.31 mg/100 mL) and ascorbic (17.15−31.55 mg/100 mL) acids. Compared with the fresh sample, the concentrations of these compounds were significantly improved (p < 0.05) in the 60 min sonicated sample but reduced (p < 0.05) in the pasteurized sample. Moreover, sonication for 60 min resulted in increments of scopoletin, rutin, and vanillic acid compared to the fresh sample. The antioxidant activity of the juice sample was improved in the sample sonicated for 60 min. Irrespective of juice processing method, the level of microbial counts in noni juice was within the satisfactory level over the 8 weeks of refrigerated (4 °C) storage. This study highlights the feasibility of using ultrasound processing to enhance the quality of noni juice on the industrial scale.
    Matched MeSH terms: Antioxidants*
  14. Surien O, Masre SF, Basri DF, Ghazali AR
    Int J Mol Sci, 2023 Jun 03;24(11).
    PMID: 37298657 DOI: 10.3390/ijms24119707
    Cancer incidence keeps increasing every year around the world and is one of the leading causes of death worldwide. Cancer has imposed a major burden on the human population, including the deterioration of physical and mental health as well as economic or financial loss among cancer patients. Conventional cancer treatments including chemotherapy, surgery, and radiotherapy have improved the mortality rate. However, conventional treatments have many challenges; for example, drug resistance, side effects, and cancer recurrence. Chemoprevention is one of the promising interventions to reduce the burden of cancer together with cancer treatments and early detection. Pterostilbene is a natural chemopreventive compound with various pharmacological properties such as anti-oxidant, anti-proliferative, and anti-inflammatory properties. Moreover, pterostilbene, due to its potential chemopreventive effect on inducing apoptosis in eliminating the mutated cells or preventing the progression of premalignant cells to cancerous cells, should be explored as a chemopreventive agent. Hence, in the review, we discuss the role of pterostilbene as a chemopreventive agent against various types of cancer via its modulation of the apoptosis pathway at the molecular levels.
    Matched MeSH terms: Antioxidants/pharmacology
  15. Manickavasagam G, Saaid M, Lim V, Saad MIZM, Azmi NAS, Osman R
    J Food Sci, 2023 Apr;88(4):1466-1481.
    PMID: 36922718 DOI: 10.1111/1750-3841.16535
    The popularity of Malaysian stingless bee honey is rising among health-conscious individuals; thus, chemical and physical evaluations of Malaysian stingless bee honey are vital to ensure the honey has achieved the optimum limits set by Malaysian and international regulatory standards so that it can be commercialized locally and internationally. Therefore, in the present study, the physicochemical characteristics (moisture content, total dissolved solids, pH, free acidity, electrical conductivity, and ash content), antioxidant properties (total phenolic and flavonoid contents), and 5-hydroxymethylfurfural (5-HMF) of Heterotrigona itama (H. itama) honey from different sites in Peninsular Malaysia were investigated. Subsequently, the correlation between these chemical and physical parameters was studied using Spearman correlation coefficients. The significant difference between H. itama honey from different topographical origins was studied using univariate analysis (one-way ANOVA followed by post hoc Tukey's test). The discrimination pattern of 45 honey samples based on their topographical origins was evaluated using cluster analysis (heatmap and dendrogram) and chemometrics analysis (partial least squares-discriminant analysis). Results showed that some samples of certain parameters (electrical conductivity, free acidity, and moisture content) have exceeded the limit set by the international regulatory standard. However, the 5-HMF content of all samples was within the allowed range. A statistically significant difference (p 
    Matched MeSH terms: Antioxidants/analysis
  16. Nevara GA, Giwa Ibrahim S, Syed Muhammad SK, Zawawi N, Mustapha NA, Karim R
    Crit Rev Food Sci Nutr, 2023;63(23):6330-6343.
    PMID: 35089825 DOI: 10.1080/10408398.2022.2031092
    The excellent health benefits of oil extracted from seeds have increased its application in foods, pharmaceutical and cosmetic industries. This trend leads to a growing research area on their by-products, oilseed meals, to minimize environmental and economic issues. Examples of these by-products are soybean, peanut, kenaf seed, hemp, sesame, and chia seed meals. It is well known that soybean meals have wide applications in food and non-food industries, while other seed meals are not well established. Most oilseed meals are rich in health beneficial compounds and are potential sources of plant protein, dietary fiber, and antioxidants. Many studies have reported on the valorization of these by-products into value-added food products such as bakery and meat products to increase their nutritional and functional properties. These efforts contribute to the sustainability, development of novel functional food and support the zero-waste concept for the environment. This review aims to provide information on the composition of selected oilseed meals from soybean, peanut, hemp, kenaf, sesame and chia seeds, their potential applications in the bakery, meat, beverage, pasta, and other food products, and to highlight the issues and challenges associated with the utilization of oilseed meals into various food products.
    Matched MeSH terms: Antioxidants*
  17. Emmclan LSH, Zakaria MH, Ramaiya SD, Natrah I, Bujang JS
    PeerJ, 2022;10:e12821.
    PMID: 35111414 DOI: 10.7717/peerj.12821
    BACKGROUND: Coastal land development has deteriorated the habitat and water quality for seagrass growth and causes the proliferation of opportunist macroalgae that can potentially affect them physically and biochemically. The present study investigates the morphological and biochemical responses of seagrass from the Hydrocharitaceae family under the macroalgal bloom of Ulva reticulata, induced by land reclamation activities for constructing artificial islands.

    METHODS: Five seagrass species, Enhalus acoroides, Thalassia hemprichii, Halophila ovalis, Halophila major, and Halophila spinulosa were collected at an Ulva reticulata-colonized site (MA) shoal and a non-Ulva reticulata-colonized site (MC) shoal at Sungai Pulai estuary, Johor, Malaysia. Morphometry of shoots comprising leaf length (LL), leaf width (LW), leaf sheath length (LSL), leaflet length (LTL), leaflet width (LTW), petiole length (PL), space between intra-marginal veins (IV) of leaf, cross vein angle (CVA) of leaf, number of the cross vein (NOC), number of the leaf (NOL) and number of the leaflet (NOLT) were measured on fresh seagrass specimens. Moreover, in-situ water quality and water nutrient content were also recorded. Seagrass extracts in methanol were assessed for total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid radical cation scavenging activity (ABTS), and ferric reducing antioxidant power (FRAP).

    RESULTS: Seagrasses in the U. reticulata-colonized site (MA) had significantly higher (t-test, p < 0.05) leaf dimensions compared to those at the non-U. reticulata colonized site (MC). Simple broad-leaved seagrass of H. major and H. ovalis were highly sensitive to the colonization of U. reticulata, which resulted in higher morphometric variation (t-test, p < 0.05) including LL, PL, LW, and IV. Concerning the biochemical properties, all the seagrasses at MA recorded significantly higher (t-test, p < 0.05) TPC, TFC, and ABTS and lower DPPH and FRAP activities compared to those at MC. Hydrocharitaceae seagrass experience positive changes in leaf morphology features and metabolite contents when shaded by U. reticulata. Researching the synergistic effect of anthropogenic nutrient loads on the interaction between seagrasses and macroalgae can provide valuable information to decrease the negative effect of macroalgae blooms on seagrasses in the tropical meadow.

    Matched MeSH terms: Antioxidants/pharmacology
  18. Laosam P, Panpipat W, Yusakul G, Cheong LZ, Chaijan M
    PLoS One, 2021;16(10):e0258445.
    PMID: 34695136 DOI: 10.1371/journal.pone.0258445
    The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand's pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40-323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH• and ABTS•+ inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH's properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative.
    Matched MeSH terms: Antioxidants*
  19. Habibvand M, Yousefi M, Ahmed SA, Hassanzadeh H
    IET Nanobiotechnol, 2023 Apr;17(2):80-90.
    PMID: 36478175 DOI: 10.1049/nbt2.12106
    Today, the increasing use of chemical preservatives in foods is considered one of the main problems in food industries. This study aimed to produce the pasteurised Doogh (Iranian yogurt drink) containing a nanoemulsion of essential oil (EO) with appropriate quality. A factorial test based on a completely randomised design with two treatments in three levels, including EO type (pennyroyal, Gijavash, and their equal combination) and a control sample was applied to assess the physicochemical and sensory properties of Doogh. The highest negative zeta potential and antioxidant activity percentage were observed in the sample containing the nanoemulsion of pennyroyal and enriched with a combination of two essential oils. The microbial evaluation results indicated that the total microorganism count was minimised in the Doogh containing the nanoemulsion of Gijavash. The nanoemulsions of pennyroyal and Gijavash can be added into Doogh formulation to produce a new product with maximum sensory acceptability.
    Matched MeSH terms: Antioxidants/chemistry
  20. Ahmed S, Sulaiman SA, Baig AA, Ibrahim M, Liaqat S, Fatima S, et al.
    Oxid Med Cell Longev, 2018;2018:8367846.
    PMID: 29492183 DOI: 10.1155/2018/8367846
    Honey clasps several medicinal and health effects as a natural food supplement. It has been established as a potential therapeutic antioxidant agent for various biodiverse ailments. Data report that it exhibits strong wound healing, antibacterial, anti-inflammatory, antifungal, antiviral, and antidiabetic effects. It also retains immunomodulatory, estrogenic regulatory, antimutagenic, anticancer, and numerous other vigor effects. Data also show that honey, as a conventional therapy, might be a novel antioxidant to abate many of the diseases directly or indirectly associated with oxidative stress. In this review, these wholesome effects have been thoroughly reviewed to underscore the mode of action of honey exploring various possible mechanisms. Evidence-based research intends that honey acts through a modulatory road of multiple signaling pathways and molecular targets. This road contemplates through various pathways such as induction of caspases in apoptosis; stimulation of TNF-α, IL-1β, IFN-γ, IFNGR1, and p53; inhibition of cell proliferation and cell cycle arrest; inhibition of lipoprotein oxidation, IL-1, IL-10, COX-2, and LOXs; and modulation of other diverse targets. The review highlights the research done as well as the apertures to be investigated. The literature suggests that honey administered alone or as adjuvant therapy might be a potential natural antioxidant medicinal agent warranting further experimental and clinical research.
    Matched MeSH terms: Antioxidants/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links