Displaying publications 1 - 20 of 83 in total

Abstract:
Sort:
  1. Hassan MZ, Osman H, Ali MA, Ahsan MJ
    Eur J Med Chem, 2016 Nov 10;123:236-255.
    PMID: 27484512 DOI: 10.1016/j.ejmech.2016.07.056
    Coumarins have received a considerable attention in the last three decades as a lead structures for the discovery of orally bioavailable non-peptidic antiviral agents. A lot of structurally diverse coumarins analogues were found to display remarkable array of affinity with the different molecular targets for antiviral agents and slight modifications around the central motif result in pronounced changes in its antiviral spectrum. This manuscript thoroughly reviews the design, discovery and structure-activity relationship studies of the coumarin analogues as antiviral agents focusing mainly on lead optimization and its development into clinical candidates.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  2. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K
    Biomed Res Int, 2014;2014:186864.
    PMID: 24877064 DOI: 10.1155/2014/186864
    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  3. Thong QX, Wong CL, Ooi MK, Kueh CL, Ho KL, Alitheen NB, et al.
    J. Gen. Virol., 2018 09;99(9):1227-1238.
    PMID: 30041713 DOI: 10.1099/jgv.0.001116
    Macrobrachium rosenbergii nodavirus (MrNv) causes white tail disease (WTD) in giant freshwater prawns, which leads to devastating economic losses in the aquaculture industry. Despite extensive research on MrNv, there is still no antiviral agent to treat WTD. Thus, the main aim of this study was to identify potential anti-MrNv molecules. A 12-mer phage-displayed peptide library was biopanned against the MrNv virus-like particle (VLP). After four rounds of biopanning, two dominant phages harbouring the amino acid sequences HTKQIPRHIYSA and VSRHQSWHPHDL were selected. An equilibrium binding assay in solution was performed to determine the relative dissociation constant (KDrel) of the interaction between the MrNv VLP and the selected fusion phages. Phage-HTKQIPRHIYSA has a KDrel value of 92.4±22.8 nM, and phage-VSRHQSWHPHDL has a KDrel value of 12.7±3.8 nM. An in-cell elisa was used to determine the inhibitory effect of the synthetic peptides towards the entry of MrNv VLP into Spodoptera frugiperda (Sf9) cells. Peptides HTKQIPRHIYSA and VSRHQSWHPHDL inhibited the entry of the MrNv VLP into Sf9 cells with IC50 values of 30.4±3.6 and 26.5±8.8 µM, respectively. Combination of both peptides showed a significantly higher inhibitory effect with an IC50 of 4.9±0.4 µM. An MTT assay revealed that the viability of MrNv-infected cells increased to about 97 % in the presence of both peptides. A real-time RT-PCR assay showed that simultaneous application of both peptides significantly reduced the number of MrNv per infected cell, from 97±9 to 11±4. These peptides are lead compounds which can be further developed into potent anti-MrNv agents.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  4. Reddi Mohan Naidu K, Satheesh Krishna B, Anil Kumar M, Arulselvan P, Ibrahim Khalivulla S, Lasekan O
    Molecules, 2012 Jun 18;17(6):7543-55.
    PMID: 22710828 DOI: 10.3390/molecules17067543
    Polyethyleneglycol bound sulfonic acid (PEG-OSO₃H), a chlorosulphonic acid-modified polyethylene glycol was successfully used as an efficient and eco-friendly polymeric catalyst in the synthesis of 14-aryl/heteroaryl-14H-dibenzo[a,j]xanthenes obtained from the reaction of 2-naphthol and carbonyl compounds under solvent-free conditions with short reaction times and excellent yields. The biological properties of these synthesized title compounds revealed that compounds 3b, 3c, 3f and 3i showed highly significant anti-viral activity against tobacco mosaic virus.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  5. Zandi K
    Methods Mol. Biol., 2016;1426:255-62.
    PMID: 27233278 DOI: 10.1007/978-1-4939-3618-2_23
    Screening of viral inhibitors through induction of cytopathic effects (CPE) by conventional method has been applied for various viruses including Chikungunya virus (CHIKV), a significant arbovirus. However, it does not provide the information about cytopathic effect from the beginning and throughout the course of virus replication. Conventionally, most of the approaches are constructed on laborious end-point assays which are not capable for detecting minute and rapid changes in cellular morphology. Therefore, we developed a label-free and dynamical method for monitoring the cellular features that comprises cell attachment, proliferation, and viral cytopathogenicity, known as the xCELLigence real-time cell analysis (RTCA). In this chapter, we provide a RTCA protocol for quantitative analysis of CHIKV replication using an infected Vero cell line treated with ribavirin as an in vitro model.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  6. Muhamad M, Kee LY, Rahman NA, Yusof R
    Int. J. Biol. Sci., 2010 May 23;6(3):294-302.
    PMID: 20567498
    Dengue viruses, mosquito-borne members of the Flaviviridae family, are the causative agents of dengue fever and its associated complications, dengue haemorrhagic fever and dengue shock syndrome. To date, more than 2.5 billion people in over 100 countries are at risk of infection, and approximately 20 million infections were reported annually. There is currently no treatment or vaccine available for dengue infection. This study employed a whole-cell organism model or in vitro methods to study the inhibitory property of the flavanoid-derived compounds against DENV2 activity. Results showed that at concentration not exceeding the maximum non-toxic dose (MNTD), these compounds completely prevented DENV2 infection in HepG2 cells as indicated by the absence of cytophatic effects. The in vitro antiviral activity assessed in HepG2 cells employing virus inhibition assay showed high inhibitory activity in a dose dependent manner. At concentration below MNTD, compounds exhibited inhibitory activity against DENV2 with a range of potency strengths of 72% to 100%. The plaque forming unit per ml (pfu/ml) was reduced prominently with a maximum reduction of 98% when the infected HepG2 cells were treated with the highest non-toxic dose of compounds. The highly potent activity of the compounds against DENV2 infection strongly suggests their potential as a lead antiviral agent for dengue.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  7. Rajik M, Jahanshiri F, Omar AR, Ideris A, Hassan SS, Yusoff K
    Virol. J., 2009;6:74.
    PMID: 19497129 DOI: 10.1186/1743-422X-6-74
    Avian influenza viruses (AIV) cause high morbidity and mortality among the poultry worldwide. Their highly mutative nature often results in the emergence of drug resistant strains, which have the potential of causing a pandemic. The virus has two immunologically important glycoproteins, hemagglutinin (HA), neuraminidase (NA), and one ion channel protein M2 which are the most important targets for drug discovery, on its surface. In order to identify a peptide-based virus inhibitor against any of these surface proteins, a disulfide constrained heptapeptide phage display library was biopanned against purified AIV sub-type H9N2 virus particles.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  8. Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K
    Biomed Res Int, 2015;2015:825203.
    PMID: 26484353 DOI: 10.1155/2015/825203
    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  9. Rothan HA, Mohamed Z, Paydar M, Rahman NA, Yusof R
    Arch. Virol., 2014 Apr;159(4):711-8.
    PMID: 24142271 DOI: 10.1007/s00705-013-1880-7
    Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  10. Abd Kadir SL, Yaakob H, Mohamed Zulkifli R
    J Nat Med, 2013 Oct;67(4):677-89.
    PMID: 23591999 DOI: 10.1007/s11418-013-0767-y
    Dengue fever causes mortality and morbidity around the world, specifically in the Tropics and subtropic regions, which has been of major concern to governments and the World Health Organization (WHO). As a consequence, the search for new anti-dengue agents from medicinal plants has assumed more urgency than in the past. Medicinal plants have been used widely to treat a variety of vector ailments such as malaria. The demand for plant-based medicines is growing as they are generally considered to be safer, non-toxic and less harmful than synthetic drugs. This article reviews potential anti-dengue activities from plants distributed around the world. Sixty-nine studies from 1997 to 2012 describe 31 different species from 24 families that are known for their anti-dengue activities. About ten phytochemicals have been isolated from 11 species, among which are compounds with the potential for development of dengue treatment. Crude extracts and essential oils obtained from 31 species showed a broad activity against Flavivirus. Current studies show that natural products represent a rich potential source of new anti-dengue compounds. Further ethnobotanical surveys and laboratory investigations are needed established the potential of identified species in contributing to dengue control.
    Matched MeSH terms: Antiviral Agents/pharmacology
  11. Sim SM, Hoggard PG, Sales SD, Phiboonbanakit D, Hart CA, Back DJ
    AIDS Res. Hum. Retroviruses, 1998 Dec 20;14(18):1661-7.
    PMID: 9870320
    Zidovudine (ZDV) is converted to its active triphosphate (ZDVTP) by intracellular kinases. The intermediate ZDV monophosphate (ZDVMP) is believed to play a major role in ZDV toxicity. Manipulation of ZDV phosphorylation is a possible therapeutic strategy for altering the risk-benefit ratio. Here we investigate whether combining RBV with ZDV is able to modulate efficacy and toxicity of ZDV. We have measured the intracellular activation of ZDV (0.3 microM) in the absence and presence of ribavirin (RBV; 2 and 20 microM) in Molt 4 and U937 cells. MTT cytotoxicity of ZDV (10-1000 microM) was also measured with and without RBV (2 microM) in Molt 4 and U937 cells. Measurement of endogenous deoxythymidine triphosphate (dTTP) allowed investigation of the dTTP/ZDVTP ratio. The antiviral efficacy of ZDV in combination with RBV (2 microM) was assessed by HIV p24 antigen measurements. In the presence of RBV (2 and 20 microM) a decrease in total ZDV phosphates was observed, owing mainly to an effect primarily on ZDVMP rather than the active ZDVTP. RBV also increased endogenous dTTP pools in both cell types, resulting in an increase in the dTTP/ZDVTP ratio. ZDV alone significantly reduced p24 antigen production, with an IC50 of 0.34 microM. Addition of RBV increased the IC50 approximately fivefold (1.52 microM). However, at higher concentrations of ZDV (10 and 100 microM) the antagonistic effect of RBV (2 microM) on ZDV was lost. The RBV-mediated decrease in ZDVMP may explain the reduction in ZDV toxicity when combined with RBV (2 microM). Cytotoxicity of ZDV was reduced in the presence of RBV (2 microM) at all concentrations in both cell lines, probably owing to saturation of ZDVTP formation. The interaction of ZDV and RBV is concentration dependent.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  12. Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M
    Phytother Res, 2005 Dec;19(12):1069-70.
    PMID: 16372376
    Andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide, ent-labdene diterpenes isolated from Andrographis paniculata showed viricidal activity against herpes simplex virus 1 (HSV-1). None of these compounds exhibited significant cytotoxicity at viricidal concentrations.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  13. Shahidah KN, Merican I
    Med. J. Malaysia, 2005 Jul;60 Suppl B:35-8.
    PMID: 16108171
    Matched MeSH terms: Antiviral Agents/pharmacology
  14. Ehteshami M, Tao S, Zandi K, Hsiao HM, Jiang Y, Hammond E, et al.
    PMID: 28137799 DOI: 10.1128/AAC.02395-16
    Chikungunya virus (CHIKV) represents a reemerging global threat to human health. Recent outbreaks across Asia, Europe, Africa, and the Caribbean have prompted renewed scientific interest in this mosquito-borne alphavirus. There are currently no vaccines against CHIKV, and treatment has been limited to nonspecific antiviral agents, with suboptimal outcomes. Herein, we have identified β-d-N4-hydroxycytidine (NHC) as a novel inhibitor of CHIKV. NHC behaves as a pyrimidine ribonucleoside and selectively inhibits CHIKV replication in cell culture.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  15. Algamal ZY, Lee MH
    SAR QSAR Environ Res, 2017 Jan;28(1):75-90.
    PMID: 28176549 DOI: 10.1080/1062936X.2017.1278618
    A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  16. Zakaryan H, Arabyan E, Oo A, Zandi K
    Arch. Virol., 2017 Sep;162(9):2539-2551.
    PMID: 28547385 DOI: 10.1007/s00705-017-3417-y
    Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  17. Chan YS, Khoo KS, Sit NWW
    Int. Microbiol., 2016 Sep;19(3):175-182.
    PMID: 28494087 DOI: 10.2436/20.1501.01.275
    Chikungunya virus is a reemerging arbovirus transmitted mainly by Aedes mosquitoes. As there are no specific treatments available, Chikungunya virus infection is a significant public health problem. This study investigated 120 extracts from selected medicinal plants for anti-Chikungunya virus activity. The plant materials were subjected to sequential solvent extraction to obtain six different extracts for each plant. The cytotoxicity and antiviral activity of each extract were examined using African monkey kidney epithelial (Vero) cells. The ethanol, methanol and chloroform extracts of Tradescantia spathacea (Commelinaceae) leaves showed the strongest cytopathic effect inhibition on Vero cells, resulting in cell viabilities of 92.6% ± 1.0% (512 μg/ml), 91.5% ± 1.7% (512 μg/ml) and 88.8% ± 2.4% (80 μg/ml) respectively. However, quantitative RT-PCR analysis revealed that the chloroform extract of Rhapis excelsa (Arecaceae) leaves resulted in the highest percentage of reduction of viral load (98.1%), followed by the ethyl acetate extract of Vernonia amygdalina (Compositae) leaves (95.5%). The corresponding 50% effective concentrations (EC50) and selectivity indices for these two extracts were 29.9 ± 0.9 and 32.4 ± 1.3 μg/ml, and 5.4 and 5.1 respectively. Rhapis excelsa and Vernonia amygdalina could be sources of anti-Chikungunya virus agents. [Int Microbiol 19(3):175-182 (2016)].
    Matched MeSH terms: Antiviral Agents/pharmacology*
  18. Ellan K, Thayan R, Raman J, Hidari KIPJ, Ismail N, Sabaratnam V
    BMC Complement Altern Med, 2019 Sep 18;19(1):260.
    PMID: 31533688 DOI: 10.1186/s12906-019-2629-y
    BACKGROUND: Dengue is a mosquito-borne viral infection that has become a major public health concern worldwide. Presently, there is no specific vaccine or treatment available for dengue viral infection.

    METHODS: Lignosus rhinocerotis, Pleurotus giganteus, Hericium erinaceus, Schizophyllum commune and Ganoderma lucidium were selected for evaluation of their in-vitro anti-dengue virus serotype 2 (DENV-2) activities. Hot aqueous extracts (HAEs), ethanol extracts (EEs), hexane soluble extracts (HSEs), ethyl acetate soluble extracts (ESEs) and aqueous soluble extracts (ASEs) were prepared from the selected mushrooms. The cytotoxic effects of the extracts were evaluated by the MTT assay. The anti-DENV-2 activities of the extracts were evaluated in three different assays: simultaneous, attachment and penetration assays were perfomed using plaque reduction assays and RT-qPCR assays. The effect of the addition time on viral replication was assessed by the time of addition assay, and a virucidal assay was carried out to evaluate the direct effect of each mushroom extract on DENV-2. The chemical composition of glucans, and the protein and phenolic acid contents in the extracts were estimated.

    RESULTS: We found that the HAEs and ASEs of L. rhinocerotis, P. giganteus, H. erinaceus and S. commune were the least toxic to Vero cells and showed very prominent anti-DENV2 activity. The 50% inhibitory concentration (IC50) values of the ASEs ranged between 399.2-637.9 μg/ml, while for the HAEs the range was 312.9-680.6 μg/ml during simultaneous treatment. Significant anti-dengue activity was also detected in the penetration assay of ASEs (IC50: 226.3-315.4 μg/ml) and HAEs (IC50: 943.1-2080.2 μg/ml). Similarly, we observed a marked reduction in the expression levels of the ENV and NS5 genes in the simultaneous and penetration assays of the ASEs and HAEs. Time-of-addition experiments showed that the highest percent of anti-DENV2 activity was observed when the mushroom extracts were added immediately after virus adsorption. None of the extracts exhibited virucidal effect. Chemical composition analysis showed that the major components in the mushroom HAEs and ASEs were glucan (beta D-glucan) and proteins, however, there was no significant correlation between the anti-dengue activity and the concentration of glucans and proteins.

    CONCLUSION: These findings demonstrated the potential of mushroom extracts as anti-dengue therapeutic agents with less toxic effects.

    Matched MeSH terms: Antiviral Agents/pharmacology*
  19. Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K
    Int J Mol Sci, 2012;13(12):16785-95.
    PMID: 23222683 DOI: 10.3390/ijms131216785
    Japanese encephalitis (JE), a mosquito-borne viral disease, is endemic to the entire east and southeast Asia, and some other parts of the world. Currently, there is no effective therapeutic available for JE; therefore, finding the effective antiviral agent against JEV replication is crucial. In the present study, the in vitro antiviral activity of baicalein and quercetin, two purportedly antiviral bioflavonoids, was evaluated against Japanese encephalitis virus (JEV) replication in Vero cells. Anti-JEV activities of these compounds were examined on different stages of JEV replication cycle. The effects of the compounds on virus replication were determined by foci forming unit reduction assay (FFURA) and quantitative RT-PCR. Baicalein showed potent antiviral activity with IC(50) = 14.28 µg/mL when it was introduced to the Vero cells after adsorption of JEV. Quercetin exhibited weak anti-JEV effects with IC(50) = 212.1 µg/mL when the JEV infected cells were treated with the compound after virus adsorption. However, baicalein exhibited significant effect against JEV adsorption with IC(50) = 7.27 µg/mL while quercetin did not show any anti-adsorption activity. Baicalein also exhibited direct extracellular virucidal activity on JEV with IC(50) = 3.44 µg/mL. However, results of quantitative RT-PCR experiments confirmed the findings from FFURA. This study demonstrated that baicalein should be considered as an appropriate candidate for further investigations, such as the study of molecular and cellular mechanism(s) of action and in vivo evaluation for the development of an effective antiviral compound against Japanese encephalitis virus.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  20. Seyedi SS, Shukri M, Hassandarvish P, Oo A, Shankar EM, Abubakar S, et al.
    Sci Rep, 2016 04 13;6:24027.
    PMID: 27071308 DOI: 10.1038/srep24027
    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya infection in humans. Despite the widespread distribution of CHIKV, no antiviral medication or vaccine is available against this virus. Therefore, it is crucial to find an effective compound to combat CHIKV. We aimed to predict the possible interactions between non-structural protein 3 (nsP) of CHIKV as one of the most important viral elements in CHIKV intracellular replication and 3 potential flavonoids using a computational approach. The 3-dimensional structure of nsP3 was retrieved from the Protein Data Bank, prepared and, using AutoDock Vina, docked with baicalin, naringenin and quercetagetin as ligands. The first-rated ligand with the strongest binding affinity towards the targeted protein was determined based on the minimum binding energy. Further analysis was conducted to identify both the active site of the protein that reacts with the tested ligands and all of the existing intermolecular bonds. Compared to the other ligands, baicalin was identified as the most potential inhibitor of viral activity by showing the best binding affinity (-9.8 kcal/mol). Baicalin can be considered a good candidate for further evaluation as a potentially efficient antiviral against CHIKV.
    Matched MeSH terms: Antiviral Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links