Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Wong NL, Achike FI
    Regul. Pept., 2010 Aug 9;163(1-3):113-9.
    PMID: 20434492 DOI: 10.1016/j.regpep.2010.04.003
    Hyperglycaemia initiates endothelial dysfunction causing diabetic macro- and micro-vasculopathy, the main causes of morbidity and mortality in diabetes mellitus. The vasculopathy exhibits gender peculiarities. We therefore explored gender differences in comparing the effects of hyperglycaemia (50 mM) per se with its hyperosmolar (50 mM) effects on vascular tissue responses to insulin. Endothelium-intact or denuded thoracic aortic rings from age-matched male and female Sprague-Dawley rats were incubated for 10 min or 6 h (acute versus chronic exposure) in normal, hyperglycaemic or hyperosmolar Krebs solution. Relaxant responses to insulin (6.9x10(-7)-6.9x10(-5) M) of the phenylephrine-contracted tissues were recorded. Endothelium denudation in both genders inhibited relaxation to insulin in all conditions, more significantly in female than in male tissues, suggesting the female response to insulin is more endothelium-dependent than the male. Acutely and chronically exposed normoglycemic endothelium-intact or -denuded tissues responded similarly to insulin. Chronic hyperglycemic or hyperosmolar exposure did not alter the endothelium-denuded tissue responses to insulin, whereas the responses of the endothelium-intact male and female hyperosmolar, and male hyperglycemic tissues were enhanced. The results show that insulin exerts an endothelium-dependent and independent relaxation with the female tissue responses more endothelium-dependent than the male. The data also suggest that hyperosmolarity per se enhances aortic tissue relaxant responses to insulin whereas hyperglycemia per se inhibits the same and more so in female than male tissues. These effects are endothelium-dependent.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  2. Subramaniam G, Achike FI, Mustafa MR
    J Cardiovasc Pharmacol, 2009 Apr;53(4):333-40.
    PMID: 19295443 DOI: 10.1097/FJC.0b013e31819fd4a7
    The mechanism by which insulin causes vasodilatation remains unclear, so we explored this in aortic rings from normal Wistar Kyoto and streptozotocin-induced diabetic rats. Insulin-induced relaxation of phenylephrine-contracted [endothelium (ED) intact or denuded] aortic rings was recorded in the presence or absence of various drug probes. Insulin relaxant effect was more in ED-intact than in-denuded tissues from normal or diabetic rats. l-NAME or methylene blue partially inhibited insulin effect in ED-intact but not the ED-denuded tissues, whereas indomethacin (cyclooxygenase inhibitor) had no effect on any of the tissues, indicating that insulin induces relaxation by ED-dependent and -independent mechanisms, the former via the NOS-cyclic guanosine monophosphate but not the cyclooxygenase pathway. The voltage-dependent K channel (KV) blocker (4-aminopyridine) inhibited insulin action in all the tissues (normal or diabetic, with or without ED), whereas the selective BKCa blocker, tetraethylammonium, inhibited it in normal (ED intact or denuded) but not in diabetic tissues, indicating that KV mediates insulin action in normal and diabetic tissues, whereas the BKCa mediates it only in normal tissues, with possible pathophysiologic absence in diabetic tissues. The inward rectifier K channel (Kir) blocker (barium chloride) significantly inhibited insulin effect only in ED-intact or -denuded diabetic tissues, whereas the KATP channel blocker, glibenclamide, inhibited it only in the ED-denuded diabetic tissues, suggesting that Kir channels mediate insulin-induced relaxation in ED-intact or -denuded diabetic tissues, whereas the KATP channel mediates it in ED-denuded diabetic tissues. All the agents combined did not abolish insulin action, suggestive of a direct vasodilatory effect. In conclusion, insulin causes vasodilatation in normal and diabetic tissues via ED-dependent and -independent mechanisms differentially modulated by K channels, some of which functions are altered in diabetes and thus are potential therapeutic targets.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  3. Lau YS, Kwan CY, Ku TC, Hsieh WT, Wang HD, Nishibe S, et al.
    J Ethnopharmacol, 2012 Sep 28;143(2):565-71.
    PMID: 22835814 DOI: 10.1016/j.jep.2012.07.012
    The leaves extract of Apocynum venetum (AVLE), also known as "luobuma", have long been used in traditional Chinese medicine to treat hypertension and depression in parts of China and it has been shown to possess anti-oxidant and anti-lipid peroxidation effects. AVLE (10 μg/ml) has been reported to have a long-lasting endothelium-dependent relaxant effect and this effect has been proposed to be due to its nitric oxide(NO)-releasing and superoxide anion(SOA)-scavenging properties.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  4. Liew SY, Mukhtar MR, Hadi AH, Awang K, Mustafa MR, Zaima K, et al.
    Molecules, 2012 Apr 02;17(4):4028-36.
    PMID: 22469596 DOI: 10.3390/molecules17044028
    A new indole alkaloid, naucline (1) together with four known alkaloids, angustine (2), angustidine (3), nauclefine (4) and naucletine (5), were isolated from the bark of Nauclea officinalis. The structures of all isolated compounds were elucidated with various spectroscopic methods such as 1D- and 2D- NMR, IR, UV and LCMS-IT-TOF. In addition to that of alkaloid 1, the complete 13C-NMR data of naucletine (5) were also reported. Naucline (1) showed a moderate vasorelaxant activity (90% relaxation at 1 × 10(-5) M) whereas, angustine (2), nauclefine (4), and naucletine (5) showed potent vasorelaxant activity (more than 90% relaxation at 1 × 10(-5) M) on an isolated rat aorta.
    Matched MeSH terms: Aorta, Thoracic/drug effects
  5. Ameer OZ, Salman IM, Najim HS, Abdullah GZ, Abdulkarim MF, Yam MF, et al.
    J Acupunct Meridian Stud, 2010 Dec;3(4):272-82.
    PMID: 21185543 DOI: 10.1016/S2005-2901(10)60048-9
    The mode by which Loranthus ferrugineus methanol extract antagonizes and/or modulates norepinephrine-induced vasoconstriction was investigated in rat aortic rings. The vascular effects of three different concentrations of this extract were challenged against cumulative additions of norepinephrine. Phentolamine, a nonselective α-adrenoceptor antagonist, verapamil, an L-type calcium channel blocker, and papaverine, a phosphodiesterase inhibitor, were used in three different concentrations as positive controls. Log concentration-response curves and double-reciprocal plots were constructed for the extract and each vasorelaxant. To characterize antagonism reversibility, the norepinephrine maximum contractile effect was examined before extract addition to the aortic ring chamber and after its removal. Phentolamine shifted the norepinephrine log concentration-response curve to the right with no significant depression in the maximum response. Similar to verapamil and papaverine, the extract produced a rightward shift in norepinephrine log concentration-response curve and a significant drop in maximum response. The double-reciprocal plots showed comparable y-intercept values for all phentolamine concentrations, a characteristic of competitive antagonism. In contrast, different y-intercept values on double-reciprocal plots were obtained for each concentration of extract, verapamil, and papaverine, typical of noncompetitive antagonism. The norepinephrine maximum contractile response was approximately similar before the addition of extract and after its removal. The data collectively showed that L. ferrugineus methanol extract exerted its vascular effect by reversible noncompetitive antagonism of norepinephrine-induced vasoconstriction. These findings add to the understanding of the cardiovascular mechanisms by which L. ferrugineus, a plant traditionally used for the management of hypertension, elicits its action.
    Matched MeSH terms: Aorta, Thoracic/drug effects
  6. Ameer OZ, Salman IM, Siddiqui MJ, Yam MF, Sriramaneni RN, Sadikun A, et al.
    Braz. J. Med. Biol. Res., 2010 Feb;43(2):186-94.
    PMID: 20084331
    We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae). By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME) was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE)- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks). The n-butanol fraction of LFME (NBF-LFME) produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.
    Matched MeSH terms: Aorta, Thoracic/drug effects
  7. Ismail NM, Jaarin K, Vasudevan SK, Hashim S
    Pharmacol. Toxicol., 1995 Jul;77(1):10-5.
    PMID: 8532606
    Nicardipine has been shown to have an anti-atherogenic effect in rabbits given a 2% cholesterol diet. Current evidence suggests that lipid peroxidation plays an important role in atherogenesis. This study examines the effect of nicardipine on lipid peroxidation in rabbits given a 2% cholesterol diet, 8 of these rabbits given nicardipine 0.5 mg/kg twice daily intramuscularly for ten weeks while the remaining untreated 6 were controls. After ten weeks, serum malondialdehyde in the control group was significantly higher compared to their baseline levels (P < 0.05). However, there was no increase in serum malondialdehyde in the nicardipine group after 10 weeks. The area of Sudan IV positive intimal lesions (atherosclerotic plaques) were significantly decreased (P < 0.01) in the treated group compared to the control group. The aortic tissue content of cholesterol and diene conjugates were also decreased in the nicardipine group (P < 0.01). These findings suggest a possible link between nicardipine and lipid peroxidation in mediating its antiatherogenic effects.
    Matched MeSH terms: Aorta, Thoracic/drug effects
  8. Runnie I, Salleh MN, Mohamed S, Head RJ, Abeywardena MY
    J Ethnopharmacol, 2004 Jun;92(2-3):311-6.
    PMID: 15138017
    In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  9. Tan CS, Tew WY, Jingying C, Yam MF
    Chem Biol Interact, 2021 Oct 01;348:109620.
    PMID: 34411564 DOI: 10.1016/j.cbi.2021.109620
    Naringenin is a naturally occurring flavanone (flavonoid) known to have bioactive effects on human health. It has been reported to show cardiovascular effects. This study aimed to investigate the possible vasorelaxant effect of naringenin and the mechanism behind it by using a Sprague Dawley rat aortic ring assay model. Naringenin caused significant vasorelaxation of endothelium-intact aortic rings precontracted with phenylephrine (pD2 = 4.27 ± 0.05; Rmax = 121.70 ± 4.04%) or potassium chloride (pD2 = 4.00 ± 0.04; Rmax = 103.40 ± 3.82%). The vasorelaxant effect decreased in the absence of an endothelium (pD2 = 3.34 ± 0.10; Rmax = 62.29 ± 2.73%). The mechanisms of the vasorelaxant effect of naringenin in the presence of antagonists were also investigated. Indomethacin, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, atropine, 4-aminopyridine, Nω-nitro-l-arginine methyl ester, glibenclamide and propranolol significantly reduced the relaxation stimulated by naringenin in the presence of endothelium. Besides that, the effect of naringenin on the voltage-operated calcium channel (VOCC) in the endothelium-intact aortic ring was studied, as was intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the endothelium-denuded aortic ring. The results showed that naringenin also significantly blocked the entry of Ca2+ via the VOCC, SERCA/SOCC and suppressed the release of Ca2+ from the SR. Thus, the vasorelaxant effect shown by naringenin mostly involve the COX pathway, the endothelium-dependent pathway via NO/sGC/prostaglandin, calcium and potassium channels.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  10. Tan CS, Ch'ng YS, Loh YC, Zaini Asmawi M, Ahmad M, Yam MF
    J Ethnopharmacol, 2017 Mar 06;199:149-160.
    PMID: 28161542 DOI: 10.1016/j.jep.2017.02.001
    ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza uralensis (G. uralensis) is one of the herbs used in traditional Chinese medicine (TCM) and serves as an envoy medicinal. Since G. uralensis plays a major role in the anti-hypertensive TCM formulae, we believe that G. uralensis might possess vasorelaxation activity.

    AIM OF THE STUDY: This study is designed to investigate the vasorelaxation effect of G. uralensis from various extracts and to study its pharmacology effect.

    MATERIALS AND METHODS: The vasorelaxation effect of G. uralensis extracts were evaluated on thoracic aortic rings isolated from Sprague Dawley rats.

    RESULTS: Among these three extracts of G. uralensis, 50% ethanolic extract (EFG) showed the strongest vasorelaxation activity. EFG caused the relaxation of the aortic rings pre-contracted with phenylephrine either in the presence or absence of endothelium and pre-contracted with potassium chloride in endothelium-intact aortic ring. Nω-nitro-L-arginine methyl ester, methylene blue, or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one inhibit the vasorelaxation effect of EFG in the presence of endothelium. On the other hand, in the presence of the potassium channel blockers (tetraethylammonium and barium chloride), the vasorelaxation effect of EFG was not affected, but glibenclamide and 4-aminopyridine did inhibit the vasorelaxation effect of EFG. With indomethacin, atropine and propranolol, the vasorelaxation effect by EFG was significantly reduced. EFG was also found to be effective in reducing Ca(2+) release from sarcoplasmic reticulum and the blocking of calcium channels.

    CONCLUSIONS: The results obtained suggest that EFG is involved in the NO/sGC/cGMP pathway.

    Matched MeSH terms: Aorta, Thoracic/drug effects
  11. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Diabetes Res Clin Pract, 2006 Jul;73(1):1-7.
    PMID: 16378655 DOI: 10.1016/j.diabres.2005.11.004
    The present work examined ex vivo the acute effect of quercetin on diabetic rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the alpha(1)-adrenergic agonist phenylephrine (PE). Responses were compared to those of aortic rings from age- and sex-matched euglycemic rats. Compared to euglycemic rat aortic rings, diabetic rings showed less relaxation in response to ACh and SNP, and greater contraction in response to PE. Pretreatment with quercetin (10microM, 20min) increased ACh-induced relaxation and decreased PE-induced contraction in diabetic, but did not affect euglycemic rat aortic ring responses. Following pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME, 10microM), quercetin reduced PE-induced contractions in both aortic ring types, although l-NAME attenuated the reduction in the diabetic rings. Quercetin did not alter SNP vasodilatory effects in either ring type compared to their respective controls. These findings indicate that quercetin acutely improved vascular responsiveness in blood vessels from diabetic rats, and that these effects were mediated, at least in part, by enhanced endothelial nitric oxide bioavailability. These effects of quercetin suggest the possible beneficial effects of quercetin in vivo in experimental diabetes and possibly in other cardiovascular diseases.
    Matched MeSH terms: Aorta, Thoracic/drug effects
  12. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    Pharm Biol, 2017 Dec;55(1):2083-2094.
    PMID: 28832263 DOI: 10.1080/13880209.2017.1357735
    CONTEXT: Vernonia amygdalina Del. (VA) (Asteraceae) is commonly used to treat hypertension in Malaysia.

    OBJECTIVE: This study investigates the vasorelaxant mechanism of VA ethanol extract (VAE) and analyzes its tri-step FTIR spectroscopy fingerprint.

    MATERIALS AND METHODS: Dried VA leaves were extracted with ethanol through maceration and concentrated using rotary evaporator before freeze-dried. The vasorelaxant activity and the underlying mechanisms of VAE using the cumulative concentration (0.01-2.55 mg/mL at 20-min intervals) were evaluated on aortic rings isolated from Sprague Dawley rats in the presence of antagonists.

    RESULTS: The tri-step FTIR spectroscopy showed that VAE contains alkaloids, flavonoids, and saponins. VAE caused the relaxation of pre-contracted aortic rings in the presence and absence of endothelium with EC50 of 0.057 ± 0.006 and 0.430 ± 0.196 mg/mL, respectively. In the presence of Nω-nitro-l-arginine methyl ester (EC50 0.971 ± 0.459 mg/mL), methylene blue (EC50 1.203 ± 0.426 mg/mL), indomethacin (EC50 2.128 ± 1.218 mg/mL), atropine (EC50 0.470 ± 0.325 mg/mL), and propranolol (EC50 0.314 ± 0.032 mg/mL), relaxation stimulated by VAE was significantly reduced. VAE acted on potassium channels, with its vasorelaxation effects significantly reduced by tetraethylammonium, 4-aminopyridine, barium chloride, and glibenclamide (EC50 0.548 ± 0.184, 0.158 ± 0.012, 0.847 ± 0.342, and 0.304 ± 0.075 mg/mL, respectively). VAE was also found to be active in reducing Ca2+ released from the sarcoplasmic reticulum and blocking calcium channels.

    CONCLUSIONS: The vasorelaxation effect of VAE involves upregulation of NO/cGMP and PGI2 signalling pathways, and modulation of calcium/potassium channels, and muscarinic and β2-adrenergic receptor levels.

    Matched MeSH terms: Aorta, Thoracic/drug effects*
  13. Tan CS, Yam MF
    Naunyn Schmiedebergs Arch Pharmacol, 2018 06;391(6):561-569.
    PMID: 29552696 DOI: 10.1007/s00210-018-1481-9
    Previous studies have demonstrated that 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF) content in Orthosiphon stamineus fractions correlate with its vasorelaxation activity. Even with the availability of previous studies, there is still very little information on the vasorelaxation effect of TMF, and few scientific studies have been carried out. Therefore, the present study was designed to investigate the vasorelaxation activity and mechanism of action of the TMF. The vasorelaxation activity and the underlying mechanisms of TMF were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. TMF caused the relaxation of aortic rings with endothelium pre-contracted with phenylephrine. However, the vasorelaxant effect of TMF was significantly decreased in PE-primed endothelium-denuded and potassium chloride-primed endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, indomethacin, tetraethylammonium, 4-aminopyridine, barium chloride, atropine and propranolol, the relaxation stimulated by TMF was significantly reduced. TMF was also found to reduce Ca2+ release from sarcoplasmic reticulum (via IP3R) and block calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of TMF involves NO/sGC/cGMP and prostacyclin pathways, calcium and potassium channels and muscarinic and beta-adrenergic receptors.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  14. Adam SK, Das S, Othman F, Jaarin K
    Clinics (Sao Paulo), 2009;64(11):1113-9.
    PMID: 19936186 DOI: 10.1590/S1807-59322009001100012
    To observe the effects of consuming repeatedly heated soy oil on the aortic tissues of estrogen-deficient rats.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  15. Razali N, Dewa A, Asmawi MZ, Mohamed N, Manshor NM
    J Integr Med, 2020 Jan;18(1):46-58.
    PMID: 31882255 DOI: 10.1016/j.joim.2019.12.003
    OBJECTIVE: To evaluate vasorelaxant and vasoconstriction effects of Zingiber officinale var. rubrum (ZOVR) on live rats and isolated aortic rings of spontaneously hypertensive rats (SHRs).

    METHODS: Extracts of ZOVR were subjected to in-vivo antihypertensive screening using noninvasive blood pressures in SHRs. The most potent extract, ZOVR petroleum ether extract (ZOP) was then fractionated using n-hexane, chloroform and water. Isolated thoracic aortic rings were harvested and subjected to vascular relaxation studies of n-hexane fraction of ZOP (HFZOP) with incubation of different antagonists such as Nω-nitro-l-arginine methyl ester (L-NAME, 10 µmol/L), indomethacin (10 µmol/L), methylene blue (10 µmol/L), atropine (1 µmol/L), glibenclamide (10 µmol/L), prazosin (0.01 µmol/L), and propranolol (1 µmol/L).

    RESULTS: During the screening of various ZOVR extracts, ZOP produced the most reduction in blood pressures of SHRs and so did HFZOP. HFZOP significantly decreased phenylephrine-induced contraction and enhanced acetylcholine-induced relaxation. L-NAME, indomethacin, methylene blue, atropine, and glibenclamide significantly potentiated the vasorelaxant effects of HFZOP. Propranolol and prazosin did not alter the vasorelaxant effects of HFZOP. HFZOP significantly suppressed the Ca2+-dependent contraction and influenced the ratio of the responses to phenylephrine in Ca2+-free medium.

    CONCLUSION: This study demonstrates that ZOP may exert an antihypertensive effect in the SHR model. Its possible vascular relaxation mechanisms involve nitric oxide and prostacyclin release, activation of cGMP-KATP channels, stimulation of muscarinic receptors, and transmembrane calcium channel or Ca2+ release from intracellular stores. Possible active compounds that contribute to the vasorelaxant effects are 6-gingerol, 8-gingerol and 6-shogaol.

    Matched MeSH terms: Aorta, Thoracic/drug effects*
  16. Kithur Mohamed S, Asif M, Nazari MV, Baharetha HM, Mahmood S, Yatim ARM, et al.
    Indian J Pharmacol, 2019 4 30;51(1):45-54.
    PMID: 31031467 DOI: 10.4103/ijp.IJP_312_18
    OBJECTIVES: Sophorolipids (SLs) are a group of surface-active glycolipids produced by a type of nonpathogenic yeast Candida bombicola in the presence of vegetable oil through fermentation technology. SLs have shown antitumor activity; however, the mechanism of action underlying the anticancer activity of SLs is poorly understood. This work evaluated the anticancer activity of SLs fermented from palm oil by exploring its antiangiogenic activity.

    MATERIALS AND METHODS: The SLs that were fermented and further characterized for their biochemical activities. Cytotoxicity study was performed to assess cytostatic properties. A series of in vitro and ex vivo angiogenesis assay was also carried out. The relative fold change in the expression of p53 mRNA by SLs was also studied.

    RESULTS: Altogether, the data show that SLs derived from palm oil fermentation process inhibited neovascularization in the ex vivo tissue segments and also the endothelial cell proliferation between 50% and 65% inhibition as a whole. The palm oil derived SLs also caused downregulation of the suppression level of vascular endothelial growth factor and also upregulate the p53 mRNA level. The analytical studies revealed the presence of high amount of phenolic compounds but with relatively weak antioxidant activity. The gas chromatography-mass spectrometry studies revealed abundant amount of palmitic and oleic acid, the latter an established antiangiogenic agent, and the former being proangiogenic.

    CONCLUSION: Therefore, it can be concluded from this study that SLs derived from fermented palm oil have potent antiangiogenic activity which may be attributed by its oleic acid component.

    Matched MeSH terms: Aorta, Thoracic/drug effects
  17. Aloysius UI, Achike FI, Mustafa MR
    Vascul. Pharmacol., 2012 Sep-Oct;57(2-4):81-90.
    PMID: 22172524 DOI: 10.1016/j.vph.2011.11.009
    The female gender reduces the risk, but succumbs more to cardiovascular disease. The hypothesis that short-term (8weeks) Streptozotocin-induced diabetes could produce greater female than male vascular tissue reactivity and the mechanistic basis were explored. Aortic ring responses to Phenylephrine were examined in age- and sex-matched normoglycaemic/diabetic rats. The normoglycaemic male tissue contracted significantly more than the normoglycaemic female and the male/female diabetic tissues. Endothelial-denudation, l-NAME or MB reversed these differences suggesting an EDNO-cGMP dependence. 17β-oestradiol exerted relaxant effect on all endothelium-denuded (and normoglycaemic endothelium-intact male) tissues, but not endothelium-intact normoglycaemic female. The greater male tissue contraction is attributable to absent 17β-oestradiol-modulated relaxation. Indomethacin blockade of COX attenuated male normoglycaemic and female diabetic tissue contraction (both reversed by l-NAME), but augmented diabetic male tissue contraction. These data are consistent with the raised contractile TXA(2) and PGE(2) in normoglycaemic male and diabetic female tissues, and the relaxant PGI(2) in diabetic male (and female). The higher levels of PGI(2) in the normoglycaemic and diabetic female perhaps explain their greater relaxant response to Acetylcholine compared to the respective male. In conclusion, there is an endothelium-dependent gender difference in the effect of short term diabetes on vascular tissue reactivity which is COX mediated.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  18. Adam SK, Das S, Jaarin K
    Int J Exp Pathol, 2009 Jun;90(3):321-7.
    PMID: 19563614 DOI: 10.1111/j.1365-2613.2009.00658.x
    Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague-Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  19. Ajay M, Chai HJ, Mustafa AM, Gilani AH, Mustafa MR
    J Ethnopharmacol, 2007 Feb 12;109(3):388-93.
    PMID: 16973321
    Previous studies have demonstrated the anti-hypertensive effects of Hibiscus sabdariffa L. (HS) in both humans and experimental animals. To explore the mechanisms of the anti-hypertensive effect of the HS, we examined the effects of a crude methanolic extract of the calyces of HS (HSE) on vascular reactivity in isolated aortas from spontaneously hypertensive rats. HSE relaxed, concentration-dependently, KCl (high K(+), 80 mM)- and phenylephrine (PE, 1 microM)-pre-contracted aortic rings, with a greater potency against the alpha(1)-adrenergic receptor agonist. The relaxant effect of HSE was partly dependent on the presence of a functional endothelium as the action was significantly reduced in endothelium-denuded aortic rings. Pretreatment with atropine (1 microM), L-NAME (10 microM) or methylene blue (10 microM), but not indomethacin (10 microM), significantly blocked the relaxant effects of HSE. Endothelium-dependent and -independent relaxations induced by acetylcholine and sodium nitroprusside, respectively, were significantly enhanced in aortic rings pretreated with HSE when compared to those observed in control aortic rings. The present results demonstrated that HSE has a vasodilator effect in the isolated aortic rings of hypertensive rats. These effects are probably mediated through the endothelium-derived nitric oxide-cGMP-relaxant pathway and inhibition of calcium (Ca(2+))-influx into vascular smooth muscle cells. The present data further supports previous in vivo findings and the traditional use of HS as an anti-hypertensive agent.
    Matched MeSH terms: Aorta, Thoracic/drug effects*
  20. Loh WM, Ling WC, Murugan DD, Lau YS, Achike FI, Vanhoutte PM, et al.
    Vascul. Pharmacol., 2015 Aug;71:151-8.
    PMID: 25869508 DOI: 10.1016/j.vph.2015.03.011
    Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress.
    Matched MeSH terms: Aorta, Thoracic/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links