Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Nordin N, Khimani K, Abd Ghani MF
    Curr Drug Discov Technol, 2021;18(6):e010921191171.
    PMID: 33563198 DOI: 10.2174/1570163818666210204202426
    BACKGROUND: Anti-apoptotic protein BCL-XL plays a vital role in tumorigenesis and cancer chemotherapy resistance, resulting in a good target for cancer treatment. Understanding the function of BCL-XL has driven the progression of a new class of cancer drugs that can mimic its natural inhibitors, BH3-only proteins, to trigger apoptosis. This mimicking is initiated through acetogenins due to their excellent biological properties. Acetogenins, which can be isolated from Annonaceae plants, have a unique structure along with several oxygenated functionalities.

    OBJECTIVE: Based on their biological capability, various acetogenins were studied in the present study and compared alongside ABT-737 on molecular docking.

    METHODS: The docking simulation of acetogenins was performed using AutoDock Vina software.

    RESULTS: Our findings have shown eleven acetogenins-BCL-XL protein complex, namely, muricin B (2), muricin F (4), muricin H (6), muricin I (7), xylomaticin (9), annomontacin (12), annonacin (14), squamocin (15), squamostatin A (16), bullatacin (20) and annoreticulin (21) exhibited strong binding affinities lower than - 10.4 kcalmol-1 as compared to ABT-373-BCL-XL complex. Six hydrogen bonds along with hydrophobic interaction were detected on the complex of BCL-XL with muricin B (2), muricin G (5), corossolone (11), and isoannonacin-10-one A (18).

    CONCLUSION: These findings indicated that some acetogenins could represent a new potential BCLXL inhibitor that could mimic the BH3-only protein for the induction of apoptosis in cancer chemotherapy.

    Matched MeSH terms: Apoptosis Regulatory Proteins/pharmacology
  2. Sothivelr V, Hasan MY, Mohd Saffian S, Zainalabidin S, Ugusman A, Mahadi MK
    J Cardiovasc Pharmacol, 2022 Sep 01;80(3):393-406.
    PMID: 35767710 DOI: 10.1097/FJC.0000000000001305
    Several types of cardiovascular cells use microRNA-21 ( miR-21 ), which has been linked to cardioprotection. In this study, we systematically reviewed the results of published papers on the therapeutic effect of miR-21 for myocardial infarction. Studies described the cardioprotective effects of miR-21 to reduce infarct size by improving angiogenesis, antiapoptotic, and anti-inflammatory mechanisms. Results suggest that cardioprotective effects of miR-21 may work synergistically to prevent the deterioration of cardiac function during postischemia. However, there are other results that indicate that miR-21 positively regulates tissue fibrosis, potentially worsening a postischemic injury. The dual functionalities of miR-21 occur through the targeting of genes and signaling pathways, such as PTEN , PDCD4 , KBTBD7 , NOS3 , STRN , and Spry-1 . This review provides insights into the future advancement of safe miR-21 -based genetic therapy in the treatment of myocardial infarction.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
  3. Chaudhry GE, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, Sung YY, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):17-24.
    PMID: 33576208 DOI: 10.31557/APJCP.2021.22.S1.17
    OBJECTIVE: Liver cancer is one of the most common causes of cancer death, with reduced survival rates. The development of new chemotherapeutic agents is essential to find effective cytotoxic drugs that give minimum side effects to the surrounding healthy tissues. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the crude and diethyl ether extract of Xylocarpus mouccensis on the human hepatocellular carcinoma cell line.

    METHODS: The cytotoxicity activity was measured using the MTS assay. The mode of cell death determined by the apoptosis study, DNA fragmentation analysis done by using the TUNEL system. The pathway study or mechanism of apoptosis observed by study caspases 8, 9, 3/7 Glo-caspases method.

    RESULTS: In this study, the methanol extracts prepared from leaf Xylocarpus mouccensis leaf produced cytotoxicity effect with IC50 (72hr) < 30µg/ml. The IC50 value at 72 hours exerted by diethyl ether extract of Xylocarpus moluccensis leaf was 0.22 µg/ml, which was more cytotoxic than to that of crude methanol extract. The results obtained by the colorimetric TUNEL system suggest that methanol crude extract of Xylocarpus moluccensis (leaf), diethyl ether extract of Xylocarpus moluccensis (leaf) and methanol extract of Xylocarpus granatum (bark) induced DNA fragmentation in the HepG2 cell line. Besides, the caspase-Glo assay demonstrated that diethyl ether leaf extract of Xylocarpus moluccensis triggered apoptotic cell death via activation of caspases -8, and -3/7 However, no visible activation was noticed for caspase -9. Furthermore, TLC indicates the presence of potential metabolites in an extract of Xylocarpus moluccensis.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in the extract of Xylocarpus moluccensis as a future therapeutic agent for the treatment of cancer.
    .

    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics; Apoptosis Regulatory Proteins/metabolism*
  4. Ghazali N, Rahman NA, Kannan TP, Ahmad A, Sulong S
    BMC Oral Health, 2023 Nov 29;23(1):945.
    PMID: 38031027 DOI: 10.1186/s12903-023-03464-3
    BACKGROUND: Nonsyndromic cleft lip and/or without cleft palate (NSCL/P) with or without hypodontia is a common developmental aberration in humans and animals. This study aimed to identify the loss of heterozygosity (LOH) involved in hypodontia and NSCL/P pathogenesis.

    METHODS: This is a cross-sectional study that conducted genome-wide copy number analysis using CytoScan 750K array on salivary samples from Malay subjects with NSCL/P with or without hypodontia aged 7-13 years. To confirm the significant results, simple logistic regression was employed to conduct statistical data analysis using SPSS software.

    RESULTS: The results indicated the most common recurrent copy neutral LOH (cnLOH) observed at 1p33-1p32.3, 1q32.2-1q42.13 and 6p12.1-6p11.1 loci in 8 (13%), 4 (7%), and 3 (5%) of the NSCL/P subjects, respectively. The cnLOHs at 1p33-1p32.3 (D1S197), 1q32.2-1q42.13 (D1S160), and 6p12.1-6p11.1 (D1S1661) were identified observed in NSCL/P and noncleft children using microsatellite analysis markers as a validation analysis. The regions affected by the cnLOHs at 1p33-1p32.3, 1q32.2-1q42.13, and 6p12.1-6p11.1 loci contained selected genes, namely FAF1, WNT3A and BMP5, respectively. There was a significant association between the D1S197 (1p33-32.3) markers containing the FAF1 gene among NSCL/P subjects with or without hypodontia compared with the noncleft subjects (p-value = 0.023).

    CONCLUSION: The results supported the finding that the genetic aberration on 1p33-32.3 significantly contributed to the development of NSCL/P with or without hypodontia. These results have an exciting prospect in the promising field of individualized preventive oral health care.

    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics
  5. Barathan M, Gopal K, Mohamed R, Ellegård R, Saeidi A, Vadivelu J, et al.
    Apoptosis, 2015 Apr;20(4):466-80.
    PMID: 25577277 DOI: 10.1007/s10495-014-1084-y
    Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex(®) 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.
    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics*; Apoptosis Regulatory Proteins/metabolism
  6. Karimian H, Mohan S, Moghadamtousi SZ, Fadaeinasab M, Razavi M, Arya A, et al.
    Molecules, 2014 Jul 03;19(7):9478-501.
    PMID: 24995928 DOI: 10.3390/molecules19079478
    Tanacetum polycephalum (L.) Schultz-Bip (Mokhaleseh) has been traditionally used in the treatment of headaches, migraines, hyperlipidemia and diabetes. The present study aimed to evaluate its anticancer properties and possible mechanism of action using MCF7 as an in vitro model. T. polycephalum leaves were extracted using hexane, chloroform and methanol solvents and the cytotoxicity was evaluated using the MTT assay. Detection of the early apoptotic cells was investigated using acridine orange/propidium iodide staining. An Annexin-V-FITC assay was carried out to observe the phosphatidylserine externalization as a marker for apoptotic cells. High content screening was applied to analyze the cell membrane permeability, nuclear condensation, mitochondrial membrane potential (MMP) and cytochrome c release. Apoptosis was confirmed by using caspase-8, caspase-9 and DNA laddering assays. In addition, Bax/Bcl-2 expressions and cell cycle arrest also have been investigated. MTT assay revealed significant cytotoxicity of T. Polycephalum hexane extract (TPHE) on MCF7 cells with the IC50 value of 6.42±0.35 µg/mL. Significant increase in chromatin condensation was also observed via fluorescence analysis. Treatment of MCF7 cells with TPHE encouraged apoptosis through reduction of MMP by down-regulation of Bcl-2 and up-regulation of Bax, triggering the cytochrome c leakage from mitochondria to the cytosol. The treated MCF7 cells significantly arrested at G1 phase. The chromatographic analysis elicited that the major active compound in this extract is 8β-hydroxy-4β,15-dihydrozaluzanin C. Taken together, the results presented in this study demonstrated that the hexane extract of T. Polycephalum inhibits the proliferation of MCF7 cells, resulting in the cell cycle arrest and apoptosis, which was explained to be through the mitochondrial pathway.
    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics; Apoptosis Regulatory Proteins/metabolism
  7. Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N
    J Mol Neurosci, 2015 Mar;55(3):609-17.
    PMID: 25129099 DOI: 10.1007/s12031-014-0400-x
    Quercetin glycosides, rutin and isoquercitrin, are potent antioxidants that have been found to possess neuroprotective effect in diseases like Parkinson's and Alzheimer's disease. In the present study, we have examined the gene expression changes with rutin and isoquercitrin pretreatment on 6-hydroxydopamine (6-OHDA)-treated toxicity in rat pheochromocytoma (PC12) cells. PC12 cells were pretreated with rutin or isoquercitrin and subsequently exposed to 6-OHDA. Rutin-pretreated PC12 attenuated the Park2, Park5, Park7, Casp3, and Casp7 genes which were expressed significantly in the 6-OHDA-treated PC12 cells. Rutin upregulated the TH gene which is important in dopamine biosynthesis, but isoquercitrin pretreatment did not affect the expression of this gene. Both rutin and isoquercitrin pretreatments upregulated the ion transport and antiapoptotic genes (NSF and Opa1). The qPCR array data were further validated by qRT-PCR using four primers, Park5, Park7, Casp3, and TH. This finding suggests that changes in the expression levels of transcripts encoded by genes that participate in ubiquitin pathway and dopamine biosynthesis may be involved in Parkinson's disease.
    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics; Apoptosis Regulatory Proteins/metabolism
  8. Azmi NH, Ismail N, Imam MU, Ismail M
    PMID: 23866310 DOI: 10.1186/1472-6882-13-177
    There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer's disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD.
    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics*; Apoptosis Regulatory Proteins/metabolism
  9. Ramdas P, Rajihuzzaman M, Veerasenan SD, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cancer Genomics Proteomics, 2011 Jan-Feb;8(1):19-31.
    PMID: 21289334
    Tocotrienols belong to the vitamin E family and have multiple anticancer effects, such as antiproliferative, antioxidant, pro-apoptosis and antimetastatic. This study aimed to identify the genes that are regulated in human breast cancer cells following exposure to various isomers of vitamin E as these may be potential targets for the treatment of breast cancer.
    Matched MeSH terms: Apoptosis Regulatory Proteins/antagonists & inhibitors; Apoptosis Regulatory Proteins/genetics*
  10. Lee YH, Pang SW, Poh CL, Tan KO
    J Cancer Res Clin Oncol, 2016 Sep;142(9):1967-77.
    PMID: 27424190 DOI: 10.1007/s00432-016-2205-5
    PURPOSE: Members of paraneoplastic Ma (PNMA) family have been identified as onconeuronal antigens, which aberrant expressions in cancer cells of patients with paraneoplastic disorder (PND) are closely linked to manifestation of auto-immunity, neuro-degeneration, and cancer. The purpose of present study was to determine the role of PNMA5 and its functional relationship to MOAP-1 (PNMA4) in human cancer cells.

    METHODS: PNMA5 mutants were generated through deletion or site-directed mutagenesis and transiently expressed in human cancer cell lines to investigate their role in apoptosis, subcellular localization, and potential interaction with MOAP-1 through apoptosis assays, fluorescence microscopy, and co-immunoprecipitation studies, respectively.

    RESULTS: Over-expressed human PNMA5 exhibited nuclear localization pattern in both MCF-7 and HeLa cells. Deletion mapping and mutagenesis studies showed that C-terminus of PNMA5 is responsible for nuclear localization, while the amino acid residues (391KRRR) within the C-terminus of PNMA5 are required for nuclear targeting. Deletion mapping and co-immunoprecipitation studies showed that PNMA5 interacts with MOAP-1 and N-terminal domain of PNMA5 is required for interaction with MOAP-1. Furthermore, co-expression of PNMA5 and MOAP-1 in MCF-7 cells significantly enhanced chemo-sensitivity of MCF-7 to Etoposide treatment, indicating that PNMA5 and MOAP-1 interact synergistically to promote apoptotic signaling in MCF-7 cells.

    CONCLUSIONS: Our results show that PNMA5 promotes apoptosis signaling in HeLa and MCF-7 cells and interacts synergistically with MOAP-1 through its N-terminal domain to promote apoptosis and chemo-sensitivity in human cancer cells. The C-terminal domain of PNMA5 is required for nuclear localization; however, both N-and C-terminal domains of PNMA5 appear to be required for pro-apoptotic function.

    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics; Apoptosis Regulatory Proteins/chemistry*
  11. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(10):1109-1126.
    PMID: 28721818 DOI: 10.2174/1389450118666170718151913
    BACKGROUND: Eurycoma longifolia is a well-documented herbal medicine that has gained widespread recognition due to its versatile pharmacological activities including anticancer, antimalarial, antimicrobial, antioxidant, aphrodisiac, anti-inflammatory, anxiolytic, anti-diabetic, antirheumatism and anti-ulcer. Plethora of in vitro and in vivo studies evidenced their excellent antiproliferative and anticancer efficacy against various types of human cancers.

    OBJECTIVE: This review was aimed to critically analyze the therapeutic viability and anticancer efficacy of Eurycoma longifolia in the treatment of cancer and also to propose its molecular and translational mechanism of cytotoxicity against cancerous cells.

    RESULTS: Among a range of medicinally active compounds isolated from various parts (roots, stem, bark and leaves) of Eurycoma longifolia, 16 compounds have shown promising anti-proliferative and anticancer efficacies. Eurycomanone, one of the most active medicinal compounds of Eurycoma longifolia, displayed a strong dose-dependent anticancer efficacy against lung carcinoma (A-549 cells) and breast cancer (MCF-7 cells); however, showed moderate efficacy against gastric (MGC-803 cells) and intestinal carcinomas (HT-29 cells). The prime mode of cytotoxicity of Eurycoma longifolia and its medicinal compounds is the induction of apoptosis (programmed cell death) via the up-regulation of the expression of p53 (tumor suppressor protein) and pro-apoptotic protein (Bax) and downregulation of the expression of anti-apoptotic protein (Bcl-2). A remarkable alleviation in the mRNA expression of various cancer-associated biomarkers including heterogeneous nuclear ribonucleoprotein (hnRNP), prohibitin (PHB), annexin-1 (ANX1) and endoplasmic reticulum protein-28 (ERp28) has also been evidenced.

    CONCLUSION: Eurycoma longifolia and its medicinal constituents exhibit promising anticancer efficacy and thus can be considered as potential complementary therapy for the treatment of various types of human cancers.

    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics; Apoptosis Regulatory Proteins/metabolism
  12. Zak J, Vives V, Szumska D, Vernet A, Schneider JE, Miller P, et al.
    Cell Death Differ, 2016 Dec;23(12):1973-1984.
    PMID: 27447114 DOI: 10.1038/cdd.2016.76
    Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.
    Matched MeSH terms: Apoptosis Regulatory Proteins/deficiency*; Apoptosis Regulatory Proteins/metabolism
  13. Gény C, Rivière G, Bignon J, Birlirakis N, Guittet E, Awang K, et al.
    J Nat Prod, 2016 Apr 22;79(4):838-44.
    PMID: 27008174 DOI: 10.1021/acs.jnatprod.5b00915
    Proteins of the Bcl-2 family are key targets in anticancer drug discovery. Disrupting the interaction between anti- and pro-apoptotic members of this protein family was the approach chosen in this study to restore apoptosis. Thus, a biological screening on the modulation of the Bcl-xL/Bak and Mcl-1/Bid interactions permitted the selection of Knema hookeriana for further phytochemical investigations. The ethyl acetate extract from the stem bark led to the isolation of six new compounds, three acetophenone derivatives (1-3) and three anacardic acid derivatives (4-6), along with four known anacardic acids (7-10) and two cardanols (11, 12). Their structures were elucidated by 1D and 2D NMR analysis in combination with HRMS experiments. The ability of these compounds to antagonize Bcl-xL/Bak and Mcl-1/Bid association was determined, using a protein-protein interaction assay, but only anacardic acid derivatives (4-10) exhibited significant binding properties, with Ki values ranging from 0.2 to 18 μM. Protein-ligand NMR experiments further revealed that anacardic acid 9, the most active compound, does not interact with the anti-apoptotic proteins Bcl-xL and Mcl-1 but instead interacts with pro-apoptotic protein Bid.
    Matched MeSH terms: Apoptosis Regulatory Proteins
  14. Xiang BLS, Kwok-Wai L, Soo-Beng AK, Mohana-Kumaran N
    Trop Life Sci Res, 2020 Oct;31(3):1-13.
    PMID: 33214852 DOI: 10.21315/tlsr2020.31.3.1
    The BCL-2 anti-apoptotic proteins are over-expressed in many cancers and hence are attractive therapeutic targets. In this study, we tested the sensitivity of two Nasopharyngeal Carcinoma (NPC) cell lines HK1 and C666-1 to Maritoclax, which is reported to repress anti-apoptotic protein MCL-1 and BH3 mimetic ABT-263, which selectively inhibits anti-apoptotic proteins BCL-2, BCL-XL and BCL-w. We investigated the sensitisation of the NPC cell lines to these drugs using the SYBR Green I assay and 3D NPC spheroids. We report that Maritoclax repressed anti-apoptotic proteins MCL-1, BCL-2, and BCL-XL in a dose- and time-dependent manner and displayed a single agent activity in inhibiting cell proliferation of the NPC cell lines. Moreover, combination of Maritoclax and ABT-263 exhibited synergistic antiproliferative effect in the HK1 cells. Similar results were obtained in the 3D spheroids generated from the HK1 cells. More notably, 3D HK1 spheroids either treated with single agent Maritoclax or combination with ABT-263, over 10 days, did not develop resistance to the treatment rapidly. Collectively, the findings illustrate that Maritoclax as a single agent or combination with BH3 mimetics could be potentially useful as treatment strategies for the management of NPC.
    Matched MeSH terms: Apoptosis Regulatory Proteins
  15. Lee YH, Pang SW, Revai Lechtich E, Shah K, Simon SE, Ponnusamy S, et al.
    J Cancer Res Clin Oncol, 2020 Jul;146(7):1751-1764.
    PMID: 32377840 DOI: 10.1007/s00432-020-03231-9
    PURPOSE: Although important for apoptosis, the signaling pathway involving MOAP-1(Modulator of Apoptosis 1), RASSF1A (RAS association domain family 1A), and Bax (Bcl-2 associated X protein) is likely to be dysfunctional in many types of human cancers due to mechanisms associated with gene mutation and DNA hyper-methylation. The purpose of the present study was to assess the potential impact of generating physiologically relevant signaling pathway mediated by MOAP-1, Bax, and RASSF1A (MBR) in cancer cells and chemo-drug resistant cancer cells.

    METHODS: The tricistronic expression construct that encodes MOAP-1, Bax, and RASSF1A (MBR) or its mutant, MOAP-1∆BH3L, Bax and RASSF1A (MBRX) was expressed from an IRES (Internal Ribosome Entry Site)-based tricistronic expression vector in human breast cancer cells, including MCF-7, MCF-7-CR (cisplatin resistant) and triple negative breast cancer cells, BMET05, for functional characterization through in vitro and in vivo models.

    RESULTS: Transient expression of MBR potently promoted dose-dependent apoptotic signaling and chemo-sensitization in the cancer cells, as evidenced by loss of cell viability, nuclei condensation and Annexin-V positive staining while stable expression of MBR in MCF-7 cells significantly reduced the number of MBR stable clone by 86% and the stable clone exhibited robust chemo-drug sensitivity. In contrast, MBRX stable clone exhibited chemo-drug resistance while transiently over-expressed MOAP-1ΔBH3L inhibited the apoptotic activity of MBR. Moreover, the spheroids derived from the MBR stable clone displayed enhanced chemo-sensitivity and apoptotic activity. In mouse xenograft model, the tumors derived from MBR stable clone showed relatively high level of tumor growth retardation associated with the increase in apoptotic activity, leading to the decreases in both tumor weight and volume.

    CONCLUSIONS: Expression of MBR in cancer cells induces apoptotic cell death with enhanced chemo-sensitization requiring the BH3L domain of MOAP-1. In animal model, the expression of MBR significantly reduces the growth of tumors, suggesting that MBR is a potent apoptotic sensitizer with potential therapeutic benefits for cancer treatment.

    Matched MeSH terms: Apoptosis Regulatory Proteins/genetics*; Apoptosis Regulatory Proteins/metabolism; Apoptosis Regulatory Proteins/chemistry
  16. Rajandram R, Razack AH, Ng KL, Gobe GC
    J Kidney Cancer VHL, 2016;3(1):1-11.
    PMID: 28326275 DOI: 10.15586/jkcvhl.2016.47
    Although primary localised tumours of renal cell carcinoma (RCC) can be treated relatively successfully with surgery, metastatic RCC has poor prognosis because of late diagnosis and resistance to therapies. In the present study, we were interested in profiling the protein expression of "inhibitor of caspase-activated DNase" (ICAD), an apoptosis inhibitor, in kidney cancer and its paired normal kidney. Immunohistochemistry with automated batch staining and morphometry using digital pathology were used to compare ICAD in 121 RCC specimens with their paired normal kidney tissue. Tissue microarray of formalin-fixed, paraffin-embedded archival tissue was used. Intensity and localisation of ICAD were compared between normal and cancer samples, and against grading within the cancers. The results demonstrated that, in this cohort, ICAD was highly expressed in the proximal tubular epithelium of normal kidney, and significantly decreased in clear cell RCC tissue (p < 0.05) as well as other subtypes of RCC (p < 0.01) compared with normal kidney. There was a tendency towards nuclear localisation of ICAD in clear cell RCC, but not in other subtypes of RCC. No significant association was found between ICAD intensity and grade of RCC. In summary, down-regulation of ICAD occurs in RCC. ICAD normally inhibits DNA fragmentation and apoptosis; thus, its down-regulation was unexpected in a cancer known for its resistance to apoptosis. However, these RCC samples were from primary, not metastatic, RCC sites, and down-regulated ICAD may be part of a progressive pathway that promotes RCC metastasis.
    Matched MeSH terms: Apoptosis Regulatory Proteins
  17. Al-Joudi, Fawwaz S., Iskandar Zulkarnain A.
    MyJurnal
    Bcl-2 is an anti-apoptotic protein belonging to a family of proteins that act as regulators of apoptosis in mammalian cells. Bcl-2 expression has previously been reported in normal breast ductal cells and its involvement in the hormonal regulation of hyperplasia and involution was further suggested, and it was thought to be expressed through hormonedependent pathways. Bcl-2 is a cytoplasmic oncoprotein which is highly expressed in human solid tumours. In breast cancer cells, however, Bcl-2 expression is down regulated, the exact mechanism and the effects of which are not clearly defined, as bcl-2 expression appears to be inversely correlated with the presence of p53 mutations. This work aimed at investigating the expression of bcl-2 in invasive ductal carcinoma of the breast utilizing an immunohistochemistry assay as well as studying the clinical correlations of bcl-2. Bcl-2 was detected in 43.7% of 382 invasive ductal carcinoma study cases. Its expression correlated positively, with lower age of patients, higher histological grades, large tumour sizes, estrogen receptor positivity and progesterone receptor negativity. However, the statistical correlations were weak. With the data obtained, it was found that the expression of bcl-2 correlated with unfavourable prognoses. Furthermore, bcl-2 detection alone may not be very helpful in consolidating a clinical diagnosis.







    59-64

    Matched MeSH terms: Apoptosis Regulatory Proteins
  18. Bouyahya A, Taha D, Benali T, Zengin G, El Omari N, El Hachlafi N, et al.
    Biomed Pharmacother, 2023 May;161:114337.
    PMID: 36812715 DOI: 10.1016/j.biopha.2023.114337
    Cynaroside is a flavonoid, isolated from several species belonging to the Apiaceae, Poaceae, Lamiaceae, Solanaceae, Zingiberaceae, Compositae and other families and it can be extracted from seeds, roots, stems, leaves, barks, flowers, fruits, aerial parts, and the whole plant of these species. This paper discloses the current state of knowledge on the biological/pharmacological effects and mode of action to better understand the numerous health benefits of cynaroside. Several research works revealed that cynaroside could have beneficial effects on various human pathologies. Indeed, this flavonoid exerts antibacterial, antifungal, antileishmanial, antioxidant, hepatoprotective, antidiabetic, anti-inflammatory, and anticancer effects. Additionally, cynaroside exhibits its anticancer effects by blocking MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR, and P70S6K. For antibacterial activity, cynaroside reduces biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, the incidence of mutations leading to ciprofloxacin resistance in Salmonella typhimurium was reduced after the treatment with cynaroside. In addition, cynaroside inhibited the production of reactive oxygen species (ROS), which reduced the damage to mitochondrial membrane potential caused by hydrogen peroxide (H2O2). It also enhanced the expression of the anti-apoptotic protein Bcl-2 and lowered that of the pro-apoptotic protein Bax. Cynaroside abrogated the up-regulation of c-Jun N-terminal kinase (JNK) and p53 protein expression triggered by H2O2. All these findings suggest that cynaroside could be used to prevent certain human diseases.
    Matched MeSH terms: Apoptosis Regulatory Proteins
  19. Ismail NZ, Mohamed WAS, Ab Rahim N, Hashim NM, Adebayo IA, Mohamad Zain NN, et al.
    J Biomol Struct Dyn, 2023;41(13):6104-6120.
    PMID: 35899385 DOI: 10.1080/07391102.2022.2101530
    Clinacanthus nutans is a medicinal plant recognised for its anticancer properties. We previously discovered that the C. nutans extract had the most potent inhibitory effect on MCF7 breast cancer cell and significantly induced apoptosis. However, there is a scarcity of studies demonstrating the molecular interactions of C. nutans-derived chemical compounds associated with apoptosis-related proteins. Therefore, the objective of this study was to determine the potential chemical compounds found in the C. nutans extract and examine their interactions with the targeted apoptotic proteins using molecular docking and molecular dynamic simulations. To address this objective, the compounds found in the SF2 extract of C. nutans were analysed using Gas Chromatography-Mass Spectrometry (GC-MS). The molecular interaction of the compounds with the targeted apoptotic proteins were determined using molecular docking and molecular dynamic simulations. GC-MS analysis revealed a total of 32 compounds in the SF2 extract. Molecular docking analysis showed that compound β-amyrenol had the highest binding affinity for MDM2-P53 (-7.26 kcal/mol), BCL2 (-11.14 kcal/mol), MCL1-BAX (-6.42 kcal/mol), MCL1-BID (-6.91 kcal/mol), and caspase-9 (-12.54 kcal/mol), whereas campesterol had the highest binding affinity for caspase-8 (-10.11 kcal/mol) and caspase-3 (-10.14 kcal/mol). These selected compounds were subjected to molecular dynamic simulation at 310 K for 100 ns. The results showed that the selected protein-ligand conformation complexes were stable, compact, and did not alter much when compared to the protein references. The findings indicate that β-amyrenol and campesterol are potentially significant compounds that might provide insight into the molecular interactions of the compounds with the apoptosis-related proteins.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Apoptosis Regulatory Proteins
  20. Salim LZ, Mohan S, Othman R, Abdelwahab SI, Kamalidehghan B, Sheikh BY, et al.
    Molecules, 2013 Sep 12;18(9):11219-40.
    PMID: 24036512 DOI: 10.3390/molecules180911219
    There has been a growing interest in naturally occurring compounds from traditional medicine with anti-cancer potential. Nigella sativa (black seed) is one of the most widely studied plants. This annual herb grows in countries bordering the Mediterranean Sea and India. Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa. The anti-cancer effect of TQ, via the induction of apoptosis resulting from mitochondrial dysfunction, was assessed in an acute lymphocyte leukemic cell line (CEMss) with an IC50 of 1.5 µg/mL. A significant increase in chromatin condensation in the cell nucleus was observed using fluorescence analysis. The apoptosis was then confirmed by Annexin V and an increased number of cellular DNA breaks in treated cells were observed as a DNA ladder. Treatment of CEMss cells with TQ encouraged apoptosis with cell death-transducing signals by a down-regulation of Bcl-2 and up-regulation of Bax. Moreover, the significant generation of cellular ROS, HSP70 and activation of caspases 3 and 8 were also observed in the treated cells. The mitochondrial apoptosis was clearly associated with the S phase cell cycle arrest. In conclusion, the results from the current study indicated that TQ could be a promising agent for the treatment of leukemia.
    Matched MeSH terms: Apoptosis Regulatory Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links