Displaying all 4 publications

Abstract:
Sort:
  1. Zakaria MR, Norrrahim MN, Hirata S, Hassan MA
    Bioresour Technol, 2015 Apr;181:263-9.
    PMID: 25659104 DOI: 10.1016/j.biortech.2015.01.072
    Eco-friendly pretreatment methods for lignocellulosic biomass are being developed as alternatives to chemical based methods. Superheated steam (SHS), hot compressed water (HCW) and wet disk milling (WDM) were used individually and with combination to partially remove hemicellulose and alter the lignin composition of recalcitrant structure of oil palm mesocarp fiber (OPMF). The efficiency of the pretreatment methods was evaluated based on the chemical compositions altered, SEM analysis, power consumption and degree of enzymatic digestibility. Hemicellulose removal (94.8%) was more pronounced under HCW compared to SHS, due to maximal contact of water and production of acetic acid which enhanced further degradation of hemicellulose. Subsequent treatment with WDM resulted in defibrillation of OPMF and expansion of the specific surface area thus increasing the conversion of cellulose to glucose. The highest glucose yield was 98.1% (g/g-substrate) when pretreated with HCW (200 °C, 20 min) and WDM which only consumed 9.6 MJ/kg of OPMF.
    Matched MeSH terms: Arecaceae/ultrastructure
  2. Sudheer S, Ali A, Manickam S
    Int J Med Mushrooms, 2016;18(10):935-943.
    PMID: 27910761
    Rigorous research has been carried out regarding the cultivation of Ganoderma lucidum using different agricultural residues. Nevertheless, large-scale cultivation and the separation of active compounds of G. lucidum are still challenges for local farmers. The objective of this study was to evaluate the use of oil palm waste fibers such as empty fruit bunch fibers and mesocarp fibers as effective substrates for the growth of G. lucidum mycelia to study the possibility of solid-state cultivation and to determine the optimum conditions necessary for the growth of mycelia of this mushroom on these waste fibers. Various parameters such as temperature, pH, humidity, and carbon and nitrogen compositions required for the optimum growth of mycelia have been determined. Oil palm fibers are a vivid source of lignocellulose, and their availability in Malaysia is high compared to that of sawdust. G. lucidum is a wood-rotting fungi that can easily decay and utilize this lignocellulose biomass, a major agricultural waste in Malaysia.
    Matched MeSH terms: Arecaceae/ultrastructure
  3. Nusaibah SA, Siti Nor Akmar A, Idris AS, Sariah M, Mohamad Pauzi Z
    Plant Physiol Biochem, 2016 Dec;109:156-165.
    PMID: 27694009 DOI: 10.1016/j.plaphy.2016.09.014
    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring.
    Matched MeSH terms: Arecaceae/ultrastructure
  4. Widyasti E, Shikata A, Hashim R, Sulaiman O, Sudesh K, Wahjono E, et al.
    Enzyme Microb Technol, 2018 Apr;111:21-28.
    PMID: 29421033 DOI: 10.1016/j.enzmictec.2017.12.009
    Oil palm trunk (OPT) is one of the most promising lignocellulosic bioresources. To develop effective biodegradation, thermophilic, anaerobic microorganisms were screened from bovine manure compost using fibrillated OPT (f-OPT) pretreated by wet disk milling as the substrate. One thermophilic, anaerobic bacterium, strain CL-2, whose 16S rDNA gene has 98.6% sequence identity with that of Caldicoprobacter faecale DSM 20678T, exhibited high degradation activity (32.7% reduction in total dry solids of f-OPT). Strain CL-2 did not use cellulose as a carbon source, but used hemicelluloses such as xylan, arabinoxylan, starch and pectin at 70 °C. Phylogenetic and morphologic analyses and the polysaccharide use suggest that CL-2 may be classified as a novel species of Caldicoprobacter, named Caldicoprobacter sp. CL-2. To characterize enzymatic activities of CL-2, extracellular enzymes were prepared from culture broth using beechwood xylan as the carbon source. The extracellular enzymes showed high xylanase activity, but low cellulase activity, suggesting that f-OPT degradation may depend on xylanase activity. To understand the xylanase system of CL-2, a major xylanase was cloned and characterized. The xylanase (CalXyn11A) had a modular structure consisting of a glycoside hydrolase (GH) family-11 domain and a family 36 carbohydrate-binding module. CalXyn11A did not show f-OPT degradation activity, but a strong synergistic effect was observed when CalXyn11A was added to the extracellular enzyme preparation. These results indicate that, rather than working alone, CalXyn11A has an important role in enhancing total lignocellulose degradation activity by cooperation with other GHs.
    Matched MeSH terms: Arecaceae/ultrastructure
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links