Displaying publications 1 - 20 of 935 in total

Abstract:
Sort:
  1. Logeswary, K., Hazlita, M.I., Wan Haslina, W.A.H., Then, K.Y., Aida, Z.M.Z.
    Medicine & Health, 2017;12(1):150-153.
    MyJurnal
    Identification of causative organisms of clinically suspected microbial keratitis is very important so that appropriate targeted antimicrobial treatment can be offered to patients. The current routine method of corneal scraping specimens on to multiple agar culture plates for microbiological study is not really providing encouraging result. Our trial of modified technique of using BACTEC broth for three clinically suspected microbial keratitis cases worked 100% to identify the causative organisms in cases of microbial keratitis.
    Keywords: culture media, cornea, keratitis
    Matched MeSH terms: Bacteria
  2. Keith RD
    Bacteria
    Matched MeSH terms: Bacteria
  3. Malaya Medical Journal, 1912;10:13-22.
    Matched MeSH terms: Bacteria
  4. Lam MQ, Oates NC, Leadbeater DR, Goh KM, Yahya A, Md Salleh M, et al.
    Genes (Basel), 2022 Nov 17;13(11).
    PMID: 36421811 DOI: 10.3390/genes13112135
    Robertkochia solimangrovi is a proposed marine bacterium isolated from mangrove soil. So far, the study of this bacterium is limited to taxonomy only. In this report, we performed a genomic analysis of R. solimangrovi that revealed its lignocellulose degrading ability. Genome mining of R. solimangrovi revealed a total of 87 lignocellulose degrading enzymes. These enzymes include cellulases (GH3, GH5, GH9 and GH30), xylanases (GH5, GH10, GH43, GH51, GH67, and GH115), mannanases (GH2, GH26, GH27 and GH113) and xyloglucanases (GH2, GH5, GH16, GH29, GH31 and GH95). Most of the lignocellulolytic enzymes encoded in R. solimangrovi were absent in the genome of Robertkochia marina, the closest member from the same genus. Furthermore, current work also demonstrated the ability of R. solimangrovi to produce lignocellulolytic enzymes to deconstruct oil palm empty fruit bunch (EFB), a lignocellulosic waste found abundantly in palm oil industry. The metabolic pathway taken by R. solimangrovi to transport and process the reducing sugars after the action of lignocellulolytic enzymes on EFB was also inferred based on genomic data. Collectively, genomic analysis coupled with experimental studies elucidated R. solimangrovi to serve as a promising candidate in seawater based-biorefinery industry.
    Matched MeSH terms: Bacteria/metabolism
  5. Ray JD, Subandiyah S, Rincon-Florez VA, Prakoso AB, Mudita IW, Carvalhais LC, et al.
    Plant Dis, 2021 Oct;105(10):2792-2800.
    PMID: 33973808 DOI: 10.1094/PDIS-01-21-0149-RE
    Blood disease in bananas caused by Ralstonia syzygii subsp. celebesensis is a bacterial wilt causing significant crop losses in Indonesia and Malaysia. Disease symptoms include wilting of the plant and red-brown vascular staining, internal rot, and discoloration of green banana fruit. There is no known varietal resistance to this disease in the Musa genus, although variation in susceptibility has been observed, with the popular Indonesian cooking banana variety Kepok being highly susceptible. This study established the current geographic distribution of Blood disease in Indonesia and confirmed the pathogenicity of isolates by Koch's postulates. The long-distance distribution of the disease followed an arbitrary pattern indicative of human-assisted movement of infected banana materials. In contrast, local or short-distance spread radiated from a single infection source, indicative of dispersal by insects and possibly contaminated tools, water, or soil. The rapid expansion of its geographical range makes Blood disease an emerging threat to banana production in Southeast Asia and beyond.
    Matched MeSH terms: Bacteria
  6. Anbu P, Gopinath SC, Chaulagain BP, Tang TH, Citartan M
    Biomed Res Int, 2015;2015:816419.
    PMID: 26161416 DOI: 10.1155/2015/816419
    Matched MeSH terms: Bacteria/enzymology*; Bacteria/genetics
  7. Tran PN, Tan NE, Lee YP, Gan HM, Polter SJ, Dailey LK, et al.
    Genome Announc, 2015;3(6).
    PMID: 26586879 DOI: 10.1128/genomeA.01319-15
    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy.
    Matched MeSH terms: Bacteria
  8. Hui RK, Chen JW, Chan KG, Leung FC
    Genome Announc, 2014;2(6).
    PMID: 25395638 DOI: 10.1128/genomeA.01164-14
    We previously identified and presented the draft genome of a Xanthomonadaceae bacterial strain Dyella japonica A8 which shows quorum-quenching activity. Here, we report the complete, closed genome sequence of this bacterium. This complete genome may help to further investigate the comparative quorum-quenching activity among D. japonica strains.
    Matched MeSH terms: Bacteria
  9. Chou LY, Clarke CM, Dykes GA
    Arch Microbiol, 2014 Oct;196(10):709-17.
    PMID: 25005571 DOI: 10.1007/s00203-014-1011-1
    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.
    Matched MeSH terms: Bacteria/classification; Bacteria/genetics; Bacteria/isolation & purification*
  10. Khayi S, Blin P, Chong TM, Chan KG, Faure D
    Genome Announc, 2018 Apr 26;6(17).
    PMID: 29700139 DOI: 10.1128/genomeA.00233-18
    Dickeya solani species are emerging bacterial pathogens of Solanum tuberosum Here, we announce the complete genome sequences of two strains, Dickeya solani D s0432-1 and PPO 9019. Strain PPO 9019 represents the first described member of the genus Dickeya with an extrachromosomal genetic element.
    Matched MeSH terms: Bacteria; Enterobacteriaceae
  11. Tong CY, Kee CY, Honda K, Derek CJC
    Environ Res, 2023 Dec 15;239(Pt 2):117403.
    PMID: 37848079 DOI: 10.1016/j.envres.2023.117403
    Bio-coating, a recent and promising approach in attached microalgal cultivation systems, has garnered attention due to its efficiency in enhancing immobilized algal growth, particularly in submerged cultivation systems. However, when the cells are cultured on thin solid microporous substrates that physically separate them from the nutrient medium, it remains unclear whether the applied bio-coatings still have a significant impact on algal growth or the subsequent rates of algal organic matter (AOM) release. Therefore, this current work investigated the role of bio-coatings on the microalgal monoculture growth of one freshwater species, Chlorella vulgaris ESP 31, and one marine species, Cylindrotheca fusiformis on a hydrophilic substrate, polyvinylidene fluoride membrane in a permeated cultivation system. Wide range of bio-coating sources were adapted, with the result demonstrating that bacteria-derived coating promoted algal growth by as high as 140% when compared with the control group for both species. Interestingly, two distinct adaptation mechanisms were observed between the species, with only C. fusiformis demonstrating a positive correlation between cell growth and AOM productivity, particularly in its extracellularly bound fractions. It is worth noting that despite this specific fraction exhibiting the lowest content among all; it displayed significant relevance in terms of AOM productivity. High extracellular protein-to-polysaccharide ratio (>5.7 fold) quantified on bacterial intracellular exudate-coated membranes indirectly revealed an underlying symbiotic microalgal-bacterial interaction. This is the first study showing how bio-coating influenced AOM yield without any physical interaction between microalgae and bacteria. It further confirms the practical benefits of bio-coating in attached cultivation systems.
    Matched MeSH terms: Bacteria
  12. Siddiqui R, Khodja A, Ibrahim T, Khamis M, Anwar A, Khan NA
    World J Microbiol Biotechnol, 2023 Oct 04;39(12):330.
    PMID: 37792153 DOI: 10.1007/s11274-023-03760-8
    With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.
    Matched MeSH terms: Bacteria
  13. Naomi R, Bt Hj Idrus R, Fauzi MB
    PMID: 32961877 DOI: 10.3390/ijerph17186803
    Cellulose is a naturally existing element in the plant's cell wall and in several bacteria. The unique characteristics of bacterial cellulose (BC), such as non-toxicity, biodegradability, hydrophilicity, and biocompatibility, together with the modifiable form of nanocellulose, or the integration with nanoparticles, such as nanosilver (AgNP), all for antibacterial effects, contributes to the extensive usage of BC in wound healing applications. Due to this, BC has gained much demand and attention for therapeutical usage over time, especially in the pharmaceutical industry when compared to plant cellulose (PC). This paper reviews the progress of related research based on in vitro, in vivo, and clinical trials, including the overall information concerning BC and PC production and its mechanisms in wound healing. The physicochemical differences between BC and PC have been clearly summarized in a comparison table. Meanwhile, the latest Food and Drug Administration (FDA) approved BC products in the biomedical field are thoroughly discussed with their applications. The paper concludes on the need for further investigations of BC in the future, in an attempt to make BC an essential wound dressing that has the ability to be marketable in the global marketplace.
    Matched MeSH terms: Bacteria*
  14. Chen BJ, Jamaludin NS, Khoo CH, See TH, Sim JH, Cheah YK, et al.
    J Inorg Biochem, 2016 10;163:68-80.
    PMID: 27529597 DOI: 10.1016/j.jinorgbio.2016.08.002
    Four compounds, R3PAu[S2CN(CH2CH2OH)2], R=Ph (1) and cyclohexyl (2), and Et3PAuS2CNRꞌ2, Rꞌ=Rꞌ=Et (3) and Rꞌ2=(CH2)4(4), have been evaluated for antibacterial activity against a panel of 24 Gram positive (8) and Gram negative (16) bacteria. Based on minimum inhibitory concentration (MIC) scores, compounds 1 and 2 were shown to be specifically potent against Gram positive bacteria whereas compounds 3 and, to a lesser extent, 4 exhibited broad range activity. All four compounds were active against methicillin resistant Staphylococcus aureus (MRSA). Time kill assays revealed the compounds to exhibit both time- and concentration-dependent pharmacokinetics against susceptible bacteria. Each compound was bactericidal against one or more bacteria with 3 being especially potent after 8h exposure; compounds 1 and 3 were bactericidal against MRSA. Compound 3 was the most effective bactericide across the series especially toward B. subtilis, S. saprophyticus, A. hydrophila, P. vulgaris, and V. parahaemolyticus. This study demonstrates the potential of this class of compounds as antibacterial agents, either broad range or against specific bacteria.
    Matched MeSH terms: Gram-Positive Bacteria/growth & development*
  15. See-Too WS, Convey P, Pearce DA, Lim YL, Ee R, Yin WF, et al.
    J Biotechnol, 2016 Mar 10;221:114-5.
    PMID: 26808870 DOI: 10.1016/j.jbiotec.2016.01.026
    Planococcus rifietoensis M8(T) (=DSM 15069(T)=ATCC BAA-790(T)) is a halotolerant bacterium with potential plant growth promoting properties isolated from an algal mat collected from a sulfurous spring in Campania (Italy). This paper presents the first complete genome of P. rifietoensis M8(T). Genes coding for various potentially plant growth promoting properties were identified within its genome.
    Matched MeSH terms: Bacteria; Planococcus Bacteria
  16. McNeil HC, Clarke SC
    Med J Malaysia, 2016 Jun;71(3):134-8.
    PMID: 27495888
    Pneumococcal disease, caused by the bacterium Streptococcus pneumoniae, is a major burden to global health. Although the World Health Organisation (WHO) strongly recommends the inclusion of pneumococcal conjugate vaccines in national immunisation programmes (NIP's) worldwide, this has not occurred in many countries in the WHO South East Asia and Western Pacific regions - particularly longstanding middle-income countries. It is widely accepted that carriage of S. pneumoniae is a precursor to developing any pneumococcal disease. The reduction in pneumococcal disease from vaccine serotypes (VT) following widespread implementation of the pneumococcal conjugate vaccine (PCV) is believed to be through the direct immunogenic protective effect of immunised individuals as well as indirectly through herd immunity diminishing the incidence of disease in nonimmunised individuals. In Malaysia, pneumococcal disease is not included in national surveillance programmes and although PCVs have been licensed, they have not been included in the NIP. Hence, the vaccine is only available privately and the majority of the population is not able to afford it. There is an urgent need to develop surveillance programmes in Malaysia to include pneumococcal serotype data from carriage and invasive disease so that it may help guide national vaccine policy prior to a decision being taken on the inclusion of PCVs in the NIP.
    Matched MeSH terms: Bacteria*
  17. Mohd Ali MKFB, Abu Bakar A, Md Noor N, Yahaya N, Ismail M, Rashid AS
    Environ Technol, 2017 Oct;38(19):2427-2439.
    PMID: 27875932 DOI: 10.1080/09593330.2016.1264486
    Microbiologically influenced corrosion (MIC) is among the common corrosion types for buried and deep-water pipelines that result in costly repair and pipeline failure. Sulfate-reducing bacteria (SRB) are commonly known as the culprit of MIC. The aim of this work is to investigate the performance of combination of ultrasound (US) irradiation and ultraviolet (UV) radiation (known as Hybrid soliwave technique, HyST) at pilot scale to inactivate SRB. The influence of different reaction times with respect to US irradiation and UV radiation and synergistic effect toward SRB consortium was tested and discussed. In this research, the effect of HyST treatment toward SRB extermination and corrosion studies of carbon steel coupon upon SRB activity before and after the treatment were performed using weight loss method. The carbon steel coupons immersed in SRB sample were exposed to HyST treatment at different time of exposure. Additionally, Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were used to investigate the corrosion morphology in verifying the end product of SRB activity and corrosion formation after treatment. Results have shown that the US irradiation treatment gives a synergistic effect when combined with UV radiation in mitigating the SRB consortium.
    Matched MeSH terms: Bacteria; Sulfur-Reducing Bacteria
  18. Aung TS, Masandid H, Oo KS, Lin Z, Rayaji SJ
    MyJurnal
    Escherichia coli (E. coli) is one of the most frequent causes of many bacterial infections especially
    gastroenteritis in developing countries. It is also used as an indicator for faecal pollution in the
    surveillance of bacteriological quality of drinking water. This study was conducted to determine the
    survival of E. coli in water at room temperature (27oC). E. coli which is cultured in Lactose Peptone Broth
    was inoculated into 8 bottles each containing 10 millilitres of distilled water. They were kept at 27oC.
    Starting from the day 1, ten-fold dilutions were made from each bottle number and E. coli count was
    done from each dilutions by using pour plate method. The colony forming unit/ millilitre (CFU/ml) was
    calculated. The same procedure was carried out from bottles number 2 to 8 from day 2 to day 8
    consecutively. CFU/ml of E. coli in dilution 10-5was markedly decreased from 3.9 x 106
    in day 1to 0 in
    day 8. The findings suggest that if the water is contaminated with low number of E. coli, it can be
    eliminated by keeping water at room temperature for only few days.
    Matched MeSH terms: Bacteria*
  19. Ibrahim RW, Nashine HK, Kamaruddin N
    Math Biosci, 2017 10;292:10-17.
    PMID: 28728968 DOI: 10.1016/j.mbs.2017.07.007
    A biological dynamic system carries engineering properties such as control systems and signal processing (or image processing) addicted to molecular biology at the level of bio-molecular communication networks. Dynamical system features and signal reply functions of cellular signaling pathways are some of the main topics in biological dynamic systems (for example the biological segmentation). In the present paper, we introduce new generalized hybrid time-space dynamical systems of growing bacteria. We impose the approximate analytic solution for the system. The generalization adapted the concepts of the Riemann-Liouville fractional operators for time and the Srivastava-Owa fractional operators for space. Moreover, we introduce a numerical perturbation method of two operators to obtain the approximate solutions. We establish the existence and uniqueness results and impose some applications in the sequel. Moreover, we study the Ulam stability and apply these stable solutions to improve the segmentation of a class of growing bacteria.
    Matched MeSH terms: Bacteria/growth & development*
  20. Abdullah NS, Doni F, Chua KO, Mispan MS, Saiman MZ, Mohd Yusuf Y, et al.
    Lett Appl Microbiol, 2022 Dec;75(6):1645-1650.
    PMID: 36073093 DOI: 10.1111/lam.13832
    Microbial-based fertilizer has been widely used as a healthier and better alternative to agrochemical products. However, the effects of biofertilizers on the rhizospheric microbiota has rarely been investigated. Thus, the aim of this study was to investigate the effects of symbiotic fungus Trichoderma asperellum SL2-based inoculant on the soil bacterial population through next generation sequencing using a metabarcoding approach. The treatment plots were treated with T. asperellum SL2 spore suspension, while the control plots were treated with sterilized distilled water. The results showed similar bacterial microbiome profiles in the soil of control and T. asperellum SL2-treated plots. In conclusion, the application of the T. asperellum SL2 inoculant had not exerted a negative impact towards the bacterial population as similar observation was reflected in control plots. Nonetheless, future research should be conducted to investigate the effects of repeated application of T. asperellum SL2 over a longer period on the rice microbiota communities.
    Matched MeSH terms: Bacteria/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links