Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Chen BJ, Jamaludin NS, Khoo CH, See TH, Sim JH, Cheah YK, et al.
    J Inorg Biochem, 2016 10;163:68-80.
    PMID: 27529597 DOI: 10.1016/j.jinorgbio.2016.08.002
    Four compounds, R3PAu[S2CN(CH2CH2OH)2], R=Ph (1) and cyclohexyl (2), and Et3PAuS2CNRꞌ2, Rꞌ=Rꞌ=Et (3) and Rꞌ2=(CH2)4(4), have been evaluated for antibacterial activity against a panel of 24 Gram positive (8) and Gram negative (16) bacteria. Based on minimum inhibitory concentration (MIC) scores, compounds 1 and 2 were shown to be specifically potent against Gram positive bacteria whereas compounds 3 and, to a lesser extent, 4 exhibited broad range activity. All four compounds were active against methicillin resistant Staphylococcus aureus (MRSA). Time kill assays revealed the compounds to exhibit both time- and concentration-dependent pharmacokinetics against susceptible bacteria. Each compound was bactericidal against one or more bacteria with 3 being especially potent after 8h exposure; compounds 1 and 3 were bactericidal against MRSA. Compound 3 was the most effective bactericide across the series especially toward B. subtilis, S. saprophyticus, A. hydrophila, P. vulgaris, and V. parahaemolyticus. This study demonstrates the potential of this class of compounds as antibacterial agents, either broad range or against specific bacteria.
    Matched MeSH terms: Gram-Positive Bacteria/growth & development*
  2. Ibrahim RW, Nashine HK, Kamaruddin N
    Math Biosci, 2017 10;292:10-17.
    PMID: 28728968 DOI: 10.1016/j.mbs.2017.07.007
    A biological dynamic system carries engineering properties such as control systems and signal processing (or image processing) addicted to molecular biology at the level of bio-molecular communication networks. Dynamical system features and signal reply functions of cellular signaling pathways are some of the main topics in biological dynamic systems (for example the biological segmentation). In the present paper, we introduce new generalized hybrid time-space dynamical systems of growing bacteria. We impose the approximate analytic solution for the system. The generalization adapted the concepts of the Riemann-Liouville fractional operators for time and the Srivastava-Owa fractional operators for space. Moreover, we introduce a numerical perturbation method of two operators to obtain the approximate solutions. We establish the existence and uniqueness results and impose some applications in the sequel. Moreover, we study the Ulam stability and apply these stable solutions to improve the segmentation of a class of growing bacteria.
    Matched MeSH terms: Bacteria/growth & development*
  3. Alswat AA, Ahmad MB, Saleh TA, Hussein MZB, Ibrahim NA
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:505-511.
    PMID: 27524047 DOI: 10.1016/j.msec.2016.06.028
    Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266.
    Matched MeSH terms: Gram-Positive Bacteria/growth & development*
  4. Nurfarahin AH, Mohamed MS, Phang LY
    Molecules, 2018 May 01;23(5).
    PMID: 29723959 DOI: 10.3390/molecules23051049
    Surfactants are compounds that can reduce the surface tension between two different phases or the interfacial tension of the liquid between water and oil, possessing both hydrophilic and hydrophobic moieties. Biosurfactants have traits that have proven to be advantageous over synthetic surfactants, but these compounds do not compete economically with synthetic surfactants. Different alternatives increase the yield of biosurfactants; development of an economical production process and the usage of cheaper substrates during process have been employed. One of the solutions relies on the suitable formulation of a production medium by including alternative raw materials sourced from agro-wastes, hydrocarbons, or by-products of a process might help in boosting the biosurfactant production. Since the nutritional factors required will be different among microorganisms, the establishment of a suitable formulation for biosurfactant production will be challenging. The present review describes various nutrients and elements considered in the formulation of a production medium with an approach focusing on the macronutrient (carbon, nitrogen source, and C/N ratio), minerals, vitamins, metabolic regulators, and salinity levels which may aid in the study of biosurfactant production in the future.
    Matched MeSH terms: Bacteria/growth & development*
  5. Al Farraj DA, Hadibarata T, Yuniarto A, Syafiuddin A, Surtikanti HK, Elshikh MS, et al.
    Bioprocess Biosyst Eng, 2019 Jun;42(6):963-969.
    PMID: 30888502 DOI: 10.1007/s00449-019-02096-8
    Polycyclic aromatics hydrocarbons (PAHs) are ubiquitous and toxic pollutants that are dangerous to humans and living organism in aquatic environment. Normally, PAHs has lower molecular weight such as phenanthrene and naphthalene that are easy and efficient to degrade, but high-molecular-weight PAHs such as chrysene and pyrene are difficult to be biodegraded by common microorganism. This study investigated the isolation and characterization of a potential halophilic bacterium capable of utilizing two high-molecular-weight PAHs. At the end of the experiment (25-30 days of incubation), bacterial counts have reached a maximum level (over 40 × 1016 CFU/mL). The highest biodegradation rate of 77% of chrysene in 20 days and 92% of pyrene in 25 days was obtained at pH 7, temperature 25 °C, agitation of 150 rpm and Tween 80 surfactant showing to be the most impressive parameters for HMWPAHs biodegradation in this research. The metabolism of initial compounds revealed that Hortaea sp. B15 utilized pyrene to form phthalic acid while chrysene was metabolized to form 1-hydroxy-2-naphthoic acid. The result showed that Hortaea sp. B15 can be promoted for the study of in situ biodegradation of high molecular weight PAH.
    Matched MeSH terms: Bacteria/growth & development*
  6. Hossain MS, Balakrishnan V, Rahman NN, Sarker MZ, Kadir MO
    Int J Environ Res Public Health, 2012 Mar;9(3):855-67.
    PMID: 22690168 DOI: 10.3390/ijerph9030855
    A steam autoclave was used to sterilize bacteria in clinical solid waste in order to determine an alternative to incineration technology in clinical solid waste management. The influence of contact time (0, 5, 15, 30 and 60 min) and temperature (111 °C, 121 °C and 131 °C) at automated saturated steam pressure was investigated. Results showed that with increasing contact time and temperature, the number of surviving bacteria decreased. The optimum experimental conditions as measured by degree of inactivation of bacteria were 121 °C for 15 minutes (min) for Gram negative bacteria, 121 °C and 131 °C for 60 and 30 min for Gram positive bacteria, respectively. The re-growth of bacteria in sterilized waste was also evaluated in the present study. It was found that bacterial re-growth started two days after the inactivation. The present study recommends that the steam autoclave cannot be considered as an alternative technology to incineration in clinical solid waste management.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  7. Farouk AE, Benafri A
    Saudi Med J, 2007 Sep;28(9):1422-4.
    PMID: 17768473
    Objective: To evaluate methanolic, ethanolic, acetone and aqueous extracts from different parts of Eurycoma longifolia (E. longifolia) (leave, stem, and root) for antibacterial activity against Gram-positive and Gram-negative bacteria and to utilize the leaves and stem parts rather than the root, which is already used for male sexual enhancement in Malaysia.

    Methods: The study took place in the Laboratory of Molecular Biology of Biotechnology Engineering Department, Malaysia between January 2005 and June 2006. Methanolic, ethanolic, acetone and aqueous extracts of leaves, stems and roots of E. longifolia were investigated for their antibacterial properties using Agar-well diffusion method.

    Results: The alcoholic and acetone extracts of the leaves and stem extracts were active on both Gram-positive and Gram-negative bacteria except against 2 strains of Gram-negative bacteria (Escherichia coli and Salmonella typhi). The root extracts had no antibacterial activity against Gram-positive and Gram-negative bacteria tested. Aqueous leaves extract showed antibacterial activity against Staphylococcus aureus and Serratia marscesens.

    Conclusion: The alcoholic and acetone extracts from leaves and stems of E. longifolia contain potent antibacterial agent(s). This plant can serve as a potential source of antibacterial compounds.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  8. Ghafari S, Hasan M, Aroua MK
    J Hazard Mater, 2009 Mar 15;162(2-3):1507-13.
    PMID: 18639979 DOI: 10.1016/j.jhazmat.2008.06.039
    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO(2) and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO(2), (II) bicarbonate plus continuous sparging of CO(2), and (III) only bicarbonate. The pH-reducing nature of CO(2) showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO(3)(-)-N/g MLVSS/h for degrading 20 and 30 mg NO(3)(-)-N/L and 9.09 mg NO(3)(-)-N/g MLVSS/h for degrading 50mg NO(3)(-)-N/L.
    Matched MeSH terms: Bacteria/growth & development
  9. Barakat A, Ghabbour HA, Al-Majid AM, Soliman SM, Ali M, Mabkhot YN, et al.
    Molecules, 2015;20(7):13240-63.
    PMID: 26197312 DOI: 10.3390/molecules200713240
    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.
    Matched MeSH terms: Bacteria/growth & development*
  10. Raja Mazlan RNA, Rukayadi Y, Maulidiani M, Ismail IS
    Molecules, 2018 Jul 16;23(7).
    PMID: 30012946 DOI: 10.3390/molecules23071730
    The aim of this study was to determine the effects of different solvents for extraction, liquid⁻liquid partition, and concentrations of extracts and fractions of Piper cubeba L. on anticariogenic; antibacterial and anti-inflammatory activity against oral bacteria. Furthermore, ¹H-Nuclear Magnetic Resonance (NMR) coupled with multivariate data analysis (MVDA) was applied to discriminate between the extracts and fractions and examine the metabolites that correlate to the bioactivities. All tested bacteria were susceptible to Piper cubeba L. extracts and fractions. Different solvents extraction, liquid⁻liquid partition and concentrations of extracts and fractions have partially influenced the antibacterial activity. MTT assay showed that P. cubeba L. extracts and fractions were not toxic to RAW 264.7 cells at selected concentrations. Anti-inflammatory activity evaluated by nitric oxide (NO) production in lipopolysaccharide (LPS) stimulated cells showed a reduction in NO production in cells treated with P. cubeba L. extracts and fractions, compared to those without treatment. Twelve putative metabolites have been identified, which are (1) cubebin, (2) yatein, (3) hinokinin, (4) dihydrocubebin, (5) dihydroclusin, (6) cubebinin, (7) magnosalin, (8) p-cymene, (9) piperidine, (10) cubebol, (11) d-germacrene and (12) ledol. Different extraction and liquid⁻liquid partition solvents caused separation in principal component analysis (PCA) models. The partial least squares (PLS) models showed that higher anticariogenic activity was related more to the polar solvents, despite some of the active metabolites also present in the non-polar solvents. Hence, P. cubeba L. extracts and fractions exhibited antibacterial and anti-inflammatory activity and have potential to be developed as the anticariogenic agent.
    Matched MeSH terms: Bacteria/growth & development*
  11. Buru AS, Pichika MR, Neela V, Mohandas K
    J Ethnopharmacol, 2014 May 14;153(3):587-95.
    PMID: 24613273 DOI: 10.1016/j.jep.2014.02.044
    Cinnamomum species have been widely used in many traditional systems of medicine around the world. In the Malaysian traditional system of medicine, the leaves, stem bark and stem wood of Cinnamomum iners, Cinnamomum porrectum, Cinnamomum altissimum and Cinnamomum impressicostatum have been used to treat wound infections. To study the antibacterial effects of Cinnamomum iners, Cinnamomum porrectum, Cinnamomum altissimum and Cinnamomum impressicostatum against common bacteria found in wound infections with primary focus on methicillin-resistant Staphylococcus aureus (MRSA).
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  12. Marimuthu K, Gunaselvam P, Aminur Rahman M, Xavier R, Arockiaraj J, Subramanian S, et al.
    Eur Rev Med Pharmacol Sci, 2015 May;19(10):1895-9.
    PMID: 26044237
    Sea urchin gonad is considered as a highly prized delicacy in several countries. It is also rich in valuable bioactive compounds including polyunsaturated fatty acids (PUFAs) and β-carotene. This study was undertaken to examine the antimicrobial properties of the ovary extract from sea urchin Diadema setosum against selected Gram-negative and Gram-positive bacteria.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  13. Sirajuddin SA, Sundram S
    Braz J Microbiol, 2020 Sep;51(3):919-929.
    PMID: 32078730 DOI: 10.1007/s42770-020-00241-0
    Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria's cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol's ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  14. Kumar GP, Phani AR, Prasad RG, Sanganal JS, Manali N, Gupta R, et al.
    Int J Pharm, 2014 Aug 25;471(1-2):146-52.
    PMID: 24858388 DOI: 10.1016/j.ijpharm.2014.05.033
    Enrofloxacin is a fluoroquinolone derivative used for treating urinary tract, respiratory and skin infections in animals. However, low solubility and low bioavailability prevented it from using on humans. Polyvinylpyrrolidone (PVP) is an inert, non toxic polymer with excellent hydrophilic properties, besides it can enhance bioavailability by forming drug polymer conjugates. With the aim of increasing solubility and bioavailability, enrofloxacin thin films were prepared using PVP as a polymer matrix. The obtained oral thin films exhibited excellent uniformity and mechanical properties. Swelling properties of the oral thin films revealed that the water uptake was enhanced by 21%. The surface pH has been found to be 6.8±0.1 indicating that these films will not cause any irritation to oral mucosa. FTIR data of the oral thin films indicated physical interaction between drug and polymer. SEM analysis revealed uniform distribution of drug in polymer matrix. In vitro drug release profiles showed enhanced release profiles (which are also pH dependant) for thin films compared to pure drug. Antibacterial activity was found to be dose dependent and maximum susceptibility was found on Klebsiella pneumonia making this preparation more suitable for respiratory infections.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  15. Abbasi MA, Nazeer MM, Rehman A, Siddiqui SZ, Hussain G, Shah SA, et al.
    Pak J Pharm Sci, 2018 Nov;31(6):2477-2485.
    PMID: 30473521
    The aim of the present research work was synthesis of some 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives and to ascertain their antibacterial potential. The cytotoxicity of these molecules was also checked to find out their utility as possible therapeutic agents. The synthesis was initiated by reacting furyl(-1-piperazinyl)methanone (1) in N,N-dimethylformamide (DMF) and lithium hydride with different aralkyl halides (2a-j) to afford 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives (3a-j). The structural confirmation of all the synthesized compounds was done by IR, EI-MS, 1H-NMR and 13C-NMR spectral techniques and through elemental analysis. The results of in vitro antibacterial activity of all the synthesized compounds were screened against Gram-negative (S. typhi, E. coli, P. aeruginosa) and Gram-positive (B. subtilis, S. aureus) bacteria and were found to be decent inhibitors. Amongst the synthesized molecules, 3e showed lowest minimum inhibitory concentration MIC = 7.52±0.μg/mL against S. Typhi, credibly due to the presence of 2-bromobenzyl group, relative to the reference standard, ciprofloxacin, having MIC = 7.45±0.58μg/mL.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  16. Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S
    Braz J Microbiol, 2019 Jan;50(1):33-42.
    PMID: 30637641 DOI: 10.1007/s42770-018-0014-5
    Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  17. Vairappan CS
    Indian J Exp Biol, 2003 Aug;41(8):837-45.
    PMID: 15248481
    Brown algae of genus Sargassum are known to produce relatively higher amount of alginic acid. Optimal extraction of this algalcolloid for local consumption requires in-depth studies on post-harvest treatment of the algal fronds. Present investigation endeavors to establish the dynamics and inter-relationship of moisture content and bacteria found on the surface of the alga and alginic acid content during post-harvest desiccation of Sargassum stolonifolium Phang et Yoshida. Harvested fronds were subjected to desiccation for 31 days and bacterial dynamics were monitored with relation to moisture content and water activity index (a(w)). There was 85% decrease in moisture content, however, a(w) showed a more gradual decrease. Total bacterial count increased during the first week and attained maximal value on day 7. Thereafter, a drastic decrease was seen until day 14, followed by a gradual decline. Six species of bacteria were isolated and identified, i.e. Azomonas punctata, Azomonas sp., Escherichia coli, Micrococcus sp., Proteus vulgaris and Vibrio alginolyticus. Calculated ratios for increase in alginic acid content and decrease in moisture content were almost the same throughout the desiccation process, implying that extracellular alginase-producing bacteria did not use the alginic acid produced by the algae as its carbon source. It became apparent that drastic decrease in bacterial count after day 7 could not be attributed to salinity, moisture content, a(w) or lack of carbon source for the bacteria. The possible exposure of these bacteria to algal cell sap which is formed due to the rupture of algal cells was seen as the most likely reason for the drop in bacterial population. Scanning electron microscope (SEM) micrograph taken on day 10 of desiccation showed the presence of cracks and localities where bacteria were exposed to algal cell sap. In vitro antibacterial tests were carried out to verify the effect of algal extracts. Separation and purification of crude algal extracts via bioassay guided separation methodology revealed the identity of active compounds (i.e. gylcolipids and free fatty acids) involved in this inherently available antibacterial defense mechanism during algal desiccation.
    Matched MeSH terms: Gram-Negative Bacteria/growth & development; Gram-Positive Bacteria/growth & development
  18. Ting A, Chow Y, Tan W
    J Tradit Chin Med, 2013 Feb;33(1):119-24.
    PMID: 23596824
    The increasing popularity and widespread use of traditional Chinese herbs as alternative medicine have sparked an interest in understanding their biosafety, especially in decoctions that are consumed. This study aimed to assess the level of microbial and heavy metal contamination in commonly consumed herbal medicine in Malaysia and the effects of boiling on these contamination levels.
    Matched MeSH terms: Bacteria/growth & development
  19. Syed MA, Sim HK, Khalid A, Shukor MY
    J Environ Biol, 2009 Jan;30(1):89-92.
    PMID: 20112868
    A stab-culture method was adapted to screen for azo dyes-decolorizing bacteria from soil and water samples. Decolorized azo dye in the lower portion of the solid media indicates the presence of anaerobic azo dyes-decolorizing bacteria, while aerobic decolorizing bacteria decolorizes the surface portion of the solid media. Of twenty soil samples tested, one soil sample shows positive results for the decolourisation of two azo dyes; Biebrich scarlet (BS) and Direct blue 71 (DB) under anaerobic conditions. A gram negative and oxidase negative bacterial isolate was found to be the principal azo dyes degrader The isolate was identified by using the Biolog identification system as Serratia marcescens.
    Matched MeSH terms: Bacteria/growth & development
  20. Ismail S, Jalilian FA, Talebpour AH, Zargar M, Shameli K, Sekawi Z, et al.
    Biomed Res Int, 2013;2013:696835.
    PMID: 23484141 DOI: 10.1155/2013/696835
    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent.
    Matched MeSH terms: Bacteria/growth & development*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links