Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Surya W, Chooduang S, Choong YK, Torres J, Boonserm P
    PLoS One, 2016;11(6):e0158356.
    PMID: 27341696 DOI: 10.1371/journal.pone.0158356
    The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. An activation step shortens both subunits BinA and BinB before their interaction with membranes and internalization in midgut cells, but the precise role of this activation step is unknown. Herein, we show conclusively using three orthogonal biophysical techniques that protoxin subunits form only monomers in aqueous solution. However, in vitro activated toxins readily form heterodimers. This oligomeric state did not change after incubation of these heterodimers with detergent. These results are consistent with the evidence that maximal toxicity in mosquito larvae is achieved when the two subunits, BinA and BinB, are in a 1:1 molar ratio, and directly link proteolytic activation to heterodimerization. Formation of a heterodimer must thus be necessary for subsequent steps, e.g., interaction with membranes, or with a suitable receptor in susceptible mosquito species. Lastly, despite existing similarities between BinB C-terminal domain with domains 3 and 4 of pore-forming aerolysin, no aerolysin-like SDS-resistant heptameric oligomers were observed when the activated Bin subunits were incubated in the presence of detergents or lipidic membranes.
    Matched MeSH terms: Bacterial Toxins/metabolism*; Bacterial Toxins/chemistry*
  2. Juárez-Pérez V, Delécluse A
    J Invertebr Pathol, 2001 Jul;78(1):57-8.
    PMID: 11500095
    Matched MeSH terms: Bacterial Toxins/genetics; Bacterial Toxins/metabolism*
  3. Chan WT, Nieto C, Harikrishna JA, Khoo SK, Othman RY, Espinosa M, et al.
    J Bacteriol, 2011 Sep;193(18):4612-25.
    PMID: 21764929 DOI: 10.1128/JB.05187-11
    Type II (proteic) toxin-antitoxin systems (TAS) are ubiquitous among bacteria. In the chromosome of the pathogenic bacterium Streptococcus pneumoniae, there are at least eight putative TAS, one of them being the yefM-yoeB(Spn) operon studied here. Through footprinting analyses, we showed that purified YefM(Spn) antitoxin and the YefM-YoeB(Spn) TA protein complex bind to a palindrome sequence encompassing the -35 region of the main promoter (P(yefM2)) of the operon. Thus, the locus appeared to be negatively autoregulated with respect to P(yefM2), since YefM(Spn) behaved as a weak repressor with YoeB(Spn) as a corepressor. Interestingly, a BOX element, composed of a single copy (each) of the boxA and boxC subelements, was found upstream of promoter P(yefM2). BOX sequences are pneumococcal, perhaps mobile, genetic elements that have been associated with bacterial processes such as phase variation, virulence regulation, and genetic competence. In the yefM-yoeB(Spn) locus, the boxAC element provided an additional weak promoter, P(yefM1), upstream of P(yefM2) which was not regulated by the TA proteins. In addition, transcriptional fusions with a lacZ reporter gene showed that P(yefM1) was constitutive albeit weaker than P(yefM2). Intriguingly, the coupling of the boxAC element to P(yefM1) and yefM(Spn) in cis (but not in trans) led to transcriptional activation, indicating that the regulation of the yefM-yoeB(Spn) locus differs somewhat from that of other TA loci and may involve as yet unidentified elements. Conservation of the boxAC sequences in all available sequenced genomes of S. pneumoniae which contained the yefM-yoeB(Spn) locus suggested that its presence may provide a selective advantage to the bacterium.
    Matched MeSH terms: Bacterial Toxins/biosynthesis*; Bacterial Toxins/genetics
  4. Ghafourian S, Good L, Sekawi Z, Hamat RA, Soheili S, Sadeghifard N, et al.
    Mem Inst Oswaldo Cruz, 2014 Jul;109(4):502-5.
    PMID: 25004148
    Although analysis of toxin-antitoxin (TA) systems can be instructive, to date, there is no information on the prevalence and identity of TA systems based on a large panel of Acinetobacter baumannii clinical isolates. The aim of the current study was to screen for functional TA systems among clinical isolates of A. baumannii and to identify the systems' locations. For this purpose, we screened 85 A. baumannii isolates collected from different clinical sources for the presence of the mazEF, relBE and higBA TA genes. The results revealed that the genes coding for the mazEF TA system were commonly present in all clinical isolates of A. baumannii. Reverse transcriptase-polymerase chain reaction analysis showed that transcripts were produced in the clinical isolates. Our findings showed that TA genes are prevalent, harboured by chromosomes and transcribed within A. baumannii. Hence, activation of the toxin proteins in the mazEF TA system should be investigated further as an effective antibacterial strategy against this bacterium.
    Matched MeSH terms: Bacterial Toxins/genetics; Bacterial Toxins/metabolism*
  5. Chan WT, Domenech M, Moreno-Córdoba I, Navarro-Martínez V, Nieto C, Moscoso M, et al.
    Toxins (Basel), 2018 09 18;10(9).
    PMID: 30231554 DOI: 10.3390/toxins10090378
    Type II (proteic) toxin-antitoxin systems (TAs) are widely distributed among bacteria and archaea. They are generally organized as operons integrated by two genes, the first encoding the antitoxin that binds to its cognate toxin to generate a harmless protein⁻protein complex. Under stress conditions, the unstable antitoxin is degraded by host proteases, releasing the toxin to achieve its toxic effect. In the Gram-positive pathogen Streptococcus pneumoniae we have characterized four TAs: pezAT, relBE, yefM-yoeB, and phD-doc, although the latter is missing in strain R6. We have assessed the role of the two yefM-yoeB and relBE systems encoded by S. pneumoniae R6 by construction of isogenic strains lacking one or two of the operons, and by complementation assays. We have analyzed the phenotypes of the wild type and mutants in terms of cell growth, response to environmental stress, and ability to generate biofilms. Compared to the wild-type, the mutants exhibited lower resistance to oxidative stress. Further, strains deleted in yefM-yoeB and the double mutant lacking yefM-yoeB and relBE exhibited a significant reduction in their ability for biofilm formation. Complementation assays showed that defective phenotypes were restored to wild type levels. We conclude that these two loci may play a relevant role in these aspects of the S. pneumoniae lifestyle and contribute to the bacterial colonization of new niches.
    Matched MeSH terms: Bacterial Toxins/genetics*
  6. Nicolas L, Charles JF, de Barjac H
    FEMS Microbiol Lett, 1993 Oct 01;113(1):23-8.
    PMID: 8243978
    The toxicity of Clostridium bifermentans serovar malaysia to mosquito larvae is due to protein toxins, belonging to a novel class of insecticidal toxins. Toxic extracts contains three major proteins of 66, 18 and 16 kDa. The 18-kDa and 16-kDa proteins are probably involved in toxicity. They are synthesised during sporulation, concomitant with activity. They are absent from non-toxic strains of C. bifermentans and are present at very low levels in non-toxic C. bifermentans serovar malaysia cultures produced at 42 degrees C. The 66-kDa protein is present throughout the growth phases of C. bifermentans serovar malaysia, and an immunologically related 66-kDa protein is present in non-toxic C. bifermentans strains.
    Matched MeSH terms: Bacterial Toxins/biosynthesis; Bacterial Toxins/toxicity*; Bacterial Toxins/chemistry
  7. Mve-Obiang A, Lee RE, Portaels F, Small PL
    Infect Immun, 2003 Feb;71(2):774-83.
    PMID: 12540557
    Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe necrotizing skin disease endemic in tropical countries. Clinical evidence suggests that M. ulcerans isolates from Asia, Mexico, and Australia may be less virulent than isolates from Africa. In vivo studies suggest that mycolactone, a polyketide-derived macrolide toxin, plays a major role in the tissue destruction and immune suppression which occur in cases of Buruli ulcer. Mycolactones were extracted from 34 isolates of M. ulcerans representing strains from Africa, Malaysia, Asia, Australia, and Mexico. Thin-layer chromatography, mass spectroscopic analysis, and cytopathic assays of partially purified mycolactones from these isolates revealed that M. ulcerans produces a heterogeneous mixture of mycolactone variants. Mycolactone A/B, the most biologically active mycolactone species, was identified by mass spectroscopy as [M(+)Na](+) at m/z 765.5 in all cytotoxic isolates except for those from Mexico. Mycolactone C [M+Na](+) at m/z 726.3 was the dominant mycolactone species in eight Australian isolates, and mycolactone D [M+Na](+) m/z 781.2 was characteristic of two Asian strains. Mycolactone species are conserved within specific geographic areas, suggesting that there may be a correlation between mycolactone profile and virulence. In addition, the core lactone, [M+Na](+) m/z 447.4, was identified as a minor species, supporting the hypothesis that mycolactones are synthesized by two polyketide synthases. A cytopathic assay of the core lactone showed that this molecule is sufficient for cytotoxicity, although it is much less potent than the complete mycolactone.
    Matched MeSH terms: Bacterial Toxins/classification*; Bacterial Toxins/isolation & purification; Bacterial Toxins/toxicity*; Bacterial Toxins/chemistry
  8. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA
    Toxins (Basel), 2016 Feb 19;8(2):49.
    PMID: 26907343 DOI: 10.3390/toxins8020049
    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
    Matched MeSH terms: Bacterial Toxins/genetics*
  9. Barloy F, Lecadet MM, Delécluse A
    Curr Microbiol, 1998 Apr;36(4):232-7.
    PMID: 9504991
    The presence of two cry-like genes first identified in Clostridium bifermentans subsp. malaysia CH18 was investigated in Clostridium species including 12 subspecies of Clostridium bifermentans, 13 strains of other members of Clostridia genus, and 13 different subspecies of Bacillus thuringiensis. Oligonucleotides designed to amplify the two toxin genes, cmb71 and cmb72, were used. We found that these genes are present in 80% of the Clostridium bifermentans strains tested and in 8% of the other Clostridium and Bacillus thuringiensis strains.
    Matched MeSH terms: Bacterial Toxins/genetics*
  10. Hindley J, Berry C
    Nucleic Acids Res, 1988 May 11;16(9):4168.
    PMID: 3375083
    Matched MeSH terms: Bacterial Toxins/genetics*
  11. Foo AE, Yap HH
    PMID: 6128794
    Comparative laboratory bioassays of three formulations of Bacillus thuringiensis H-14 (IPS-78, San 402-I and Bactimos) were conducted against late 3rd/early 4th instar larvae of four species of mosquito, viz., Aedes aegypti, Culex quinquefasciatus, Anopheles balabacensis and Mansonia (Mansonioides) indiana, in Malaysia. From the average response of the mosquito larvae to the three formulations of B. thuringiensis H-14, Ae. aegypti was found to be most susceptible, followed by Cx. quinquefasciatus, An. balabacensis and M. (M.) indiana in decreasing order. The LC50 values for Ae. aegypti, Cx. quinquefasciatus, An. balabacensis and M. (M.) indiana after a 48-hour exposure to IPS-78 formulation were 50.9, 129.3, 117.8 and 169.6 International Toxic Unit (ITU) Ae. ae./l; to San 402-I formulation were 54.6, 223.1, 405.1 and 177.6 ITU Ae. ae/l and to Bactimos formulation were 57.2, 175.7, 35.6 and 514.5 ITU Ae. ae./l respectively. The efficacy of the bacterial product was also found to be determined by its formulation in relation to the feeding and resting habits of the mosquito larvae. No delayed pupation or emergence was observed on the larvae exposed to B. thuringiensis H-14 at sub-lethal concentrations.
    Matched MeSH terms: Bacterial Toxins/toxicity*
  12. Yeo CC
    Mol Microbiol, 2018 05;108(4):331-335.
    PMID: 29624768 DOI: 10.1111/mmi.13958
    GCN5-related N-acetyltransferase (GNAT) is a huge superfamily of proteins spanning the prokaryotic and eukaryotic domains of life. GNAT proteins usually transfer an acetyl group from acetyl-CoA to a wide variety of substrates ranging from aminoglycoside antibiotics to large macromolecules. Type II toxin-antitoxin (TA) modules are typically bicistronic and widespread in bacterial and archael genomes with diverse cellular functions. Recently, a novel family of type II TA toxins was described, which presents a GNAT-fold and functions by acetylating charged tRNA thereby precluding translation. These GNAT toxins are usually associated with a corresponding ribbon-helix-helix-fold (RHH) antitoxin. In this issue, Qian et al. describes a unique GNAT-RHH TA system, designated KacAT, from a multidrug resistant strain of the pathogen, Klebsiella pneumoniae. As most type II TA loci, kacAT is transcriptionally autoregulated with the KacAT complex binding to the operator site via the N-terminus region of KacA to repress kacAT transcription. The crystal structure of the KacT toxin is also presented giving a structural basis for KacT toxicity. These findings expand our knowledge on this newly discovered family of TA toxins and the potential role that they may play in antibiotic tolerance and persistence of bacterial pathogens.
    Matched MeSH terms: Bacterial Toxins
  13. Tee TS, Devi S, Puthucheary SD, Kautner IM
    PMID: 7777904
    Approximately 57% of clinical and 33% of poultry isolates examined produced a cytotoxin. Cytotoxic activity was detected in 25 (50%) isolates of Campylobacter of which 12 were isolated from bloody diarrhea and 9 from watery stools. The cytotoxin titers were low, ranging from 2 to 16. The crude filtrates from 50 Campylobacter isolates showed no cytotoxic effect in Vero cells, no fluid accumulation in suckling mice and no hemolytic activity.
    Matched MeSH terms: Bacterial Toxins/biosynthesis*; Bacterial Toxins/toxicity
  14. Barloy F, Delécluse A, Nicolas L, Lecadet MM
    J Bacteriol, 1996 Jun;178(11):3099-105.
    PMID: 8655486
    A gene (cbm71) encoding a 71,128-Da mosquitocidal protein (Cbm71) was obtained by screening a size-fractionated XbaI digest of total genomic DNA from Clostridium bifermentans subsp. malaysia CH18 with two gene-specific oligonucleotide probes. The sequence of the Cbm71 protein, as deduced from the sequence of cbm71, corresponds to that of the 66-kDa protein previously described as one of the mosquitocidal components of C. bifermentans subsp. malaysia. Cbm71 shows limited similarities with Bacillus thuringiensis delta-endotoxins, especially in the four first conserved blocks. However, Cbm71 was not immunologically related to any of the Cry toxins and thus belongs to a novel class of mosquitocidal protein. The cbm71 gene was expressed in a nontoxic strain of B. thuringiensis, and Cbm71 was produced during sporulation and secreted to the supernatant of culture. Trichloroacetic-precipitated supernatant preparations were toxic for mosquito larvae of the species Aedes aegypti, Culex pipiens, and Anopheles stephensi.
    Matched MeSH terms: Bacterial Toxins/genetics*; Bacterial Toxins/pharmacology
  15. Florence L CH, Hakim SL, Kamaluddin MA, Thong KL
    Trop Biomed, 2011 Apr;28(1):171-4.
    PMID: 21602783
    Toxinotype of Clostridium perfringens (CP) isolates collected from the Bernam River, Selangor River and Tengi Canal between April 2007 and January 2008 were determined by Polymerase Chain Reaction (PCR) using published primers. All the 147 isolates were toxinotype Type A, harbouring the alpha toxin gene. In addition, 5 of the isolates also had the enterotoxin (CPE) gene.
    Matched MeSH terms: Bacterial Toxins/classification; Bacterial Toxins/genetics*
  16. Qureshi N, Chawla S, Likitvivatanavong S, Lee HL, Gill SS
    Appl Environ Microbiol, 2014 Sep;80(18):5689-97.
    PMID: 25002432 DOI: 10.1128/AEM.01139-14
    The management and control of mosquito vectors of human disease currently rely primarily on chemical insecticides. However, larvicidal treatments can be effective, and if based on biological insecticides, they can also ameliorate the risk posed to human health by chemical insecticides. The aerobic bacteria Bacillus thuringiensis and Lysinibacillus sphaericus have been used for vector control for a number of decades. But a more cost-effective use would be an anaerobic bacterium because of the ease with which these can be cultured. More recently, the anaerobic bacterium Clostridium bifermentans subsp. malaysia has been reported to have high mosquitocidal activity, and a number of proteins were identified as potentially mosquitocidal. However, the cloned proteins showed no mosquitocidal activity. We show here that four toxins encoded by the Cry operon, Cry16A, Cry17A, Cbm17.1, and Cbm17.2, are all required for toxicity, and these toxins collectively show remarkable selectivity for Aedes rather than Anopheles mosquitoes, even though C. bifermentans subsp. malaysia is more toxic to Anopheles. Hence, toxins that target Anopheles are different from those expressed by the Cry operon.
    Matched MeSH terms: Bacterial Toxins/genetics*; Bacterial Toxins/toxicity*
  17. Neela V, Ehsanollah GR, Zamberi S, Van Belkum A, Mariana NS
    Int J Infect Dis, 2009 May;13(3):e131-2.
    PMID: 18955004 DOI: 10.1016/j.ijid.2008.07.009
    Matched MeSH terms: Bacterial Toxins/genetics*; Bacterial Toxins/isolation & purification
  18. Abu Bakar F, Yeo CC, Harikrishna JA
    Int J Mol Sci, 2016 Apr 20;17(4).
    PMID: 27104531 DOI: 10.3390/ijms17040321
    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.
    Matched MeSH terms: Bacterial Toxins/genetics*; Bacterial Toxins/metabolism
  19. Leong CL, Norazah A, Azureen A, Lingam R
    Med J Malaysia, 2017 12;72(6):378-379.
    PMID: 29308781
    A 61-year-old male presented with community-onset pneumonia not responding to treatment despite given appropriate antibiotics. Computed tomography scan of the thorax showed large multiloculated pleural effusion with multiple cavitating foci within collapsed segments; lesions which were suggestive of necrotising pneumonia. Drainage of the effusion and culture revealed methicillin-resistant Staphylococcus aureus, which had the same antibiotic profile with the blood isolate and PVL gene positive.
    Matched MeSH terms: Bacterial Toxins/adverse effects*; Bacterial Toxins/biosynthesis*
  20. Chan WT, Yeo CC, Sadowy E, Espinosa M
    Front Microbiol, 2014;5:677.
    PMID: 25538695 DOI: 10.3389/fmicb.2014.00677
    Bacterial toxin-antitoxin (TAs) loci usually consist of two genes organized as an operon, where their products are bound together and inert under normal conditions. However, under stressful circumstances the antitoxin, which is more labile, will be degraded more rapidly, thereby unleashing its cognate toxin to act on the cell. This, in turn, causes cell stasis or cell death, depending on the type of TAs and/or time of toxin exposure. Previously based on in silico analyses, we proposed that Streptococcus pneumoniae, a pathogenic Gram-positive bacterium, may harbor between 4 and 10 putative TA loci depending on the strains. Here we have chosen the pneumococcal strain Hungary(19A)-6 which contains all possible 10 TA loci. In addition to the three well-characterized operons, namely relBE2, yefM-yoeB, and pezAT, we show here the functionality of a fourth operon that encodes the pneumococcal equivalent of the phd-doc TA. Transcriptional fusions with gene encoding Green Fluorescent Protein showed that the promoter was slightly repressed by the Phd antitoxin, and exhibited almost background values when both Phd-Doc were expressed together. These findings demonstrate that phd-doc shows the negative self-regulatory features typical for an authentic TA. Further, we also show that the previously proposed TAs XreA-Ant and Bro-XreB, although they exhibit a genetic organization resembling those of typical TAs, did not appear to confer a functional behavior corresponding to bona fide TAs. In addition, we have also discovered new interesting bioinformatics results for the known pneumococcal TAs RelBE2 and PezAT. A global analysis of the four identified toxins-antitoxins in the pneumococcal genomes (PezAT, RelBE2, YefM-YoeB, and Phd-Doc) showed that RelBE2 and Phd-Doc are the most conserved ones. Further, there was good correlation among TA types, clonal complexes and sequence types in the 48 pneumococcal strains analyzed.
    Matched MeSH terms: Bacterial Toxins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links