Displaying all 6 publications

Abstract:
Sort:
  1. Prameela KK
    Med J Malaysia, 2019 12;74(6):527-533.
    PMID: 31929480
    INTRODUCTION: Exclusive breastfeeding for the initial six months of life is crucial and it is recommended . Breast milk jaundice is an innocuous condition that occurs in some healthy, breastfed infants. However, the potential dangers of jaundice in the neonate such as bilirubin induced neuronal pathology, mandates a better understanding of the pathophysiology of breast milk jaundice and the impact of breastfeeding during jaundice. In this context , advice on continued breastfeeding must consider both the benefits of breastfeeding and the possible disadvantages of the jaundice.

    METHODS: Reviewing literature and integrating relevant information facilitated the appraisal of this important topic. This article reviewed neonatal jaundice, the entry of bilirubin into the immature brain and how breastfeeding may impact jaundice in the neonate.

    RESULTS: While some substances in breast milk may be responsible for jaundice on the one hand, there is an irrefutable spectrum of advantages conferred by continued breastfeeding, on the other. As the breastfed infant benefits from fewer infections, enhanced organ and physiological barrier maturity, as well as the prospect of genetic modification of certain diseases, these useful actions could also reduce risks of early jaundice and its complications.

    DISCUSSION: An exciting field for further research, holistic integration of knowledge clarifies both the overall advantages of breastfeeding and wisdom of its continued counsel. In fact, breast milk jaundice may reflect a holistic expression of tissue protection and enhanced neonatal survival.

    Matched MeSH terms: Bilirubin/metabolism
  2. Kim BB, Abdul Kadir H, Tayyab S
    Pak J Biol Sci, 2008 Oct 15;11(20):2418-22.
    PMID: 19137852
    Interaction of bromophenol blue (BPB) with serum albumins from different mammalian species, namely, human (HSA), bovine (BSA), goat (GSA), sheep (SSA), rabbit (RbSA), porcine (PSA) and dog (DSA) was studied using absorption and absorption difference spectroscopy. BPB-albumin complexes showed significant differences in the spectral characteristics, i.e., extent of bathochromic shift and hypochromism relative to the spectral features of free BPB. Absorption difference spectra of these complexes also showed variations in the position of maxima and absorption difference (deltaAbs.) values. Absorption difference spectra of different bilirubin (BR)-albumin complexes showed a significant blue shift accompanied by decrease in deltaAbs. values in presence of BPB which were indicative of the displacement of bound BR from its binding site in BR-albumin complexes. These changes in the difference spectral characteristics of BR-albumin complexes were more marked at higher BPB concentration. However, the extent of these changes was different for different BR-albumin complexes. Taken together, all these results suggest that BPB partially shares BR binding site on albumin and different mammalian albumins show differences in the microenvironment of the BR/BPB binding site.
    Matched MeSH terms: Bilirubin/metabolism*
  3. Seyed Khoei N, Jenab M, Murphy N, Banbury BL, Carreras-Torres R, Viallon V, et al.
    BMC Med, 2020 09 03;18(1):229.
    PMID: 32878631 DOI: 10.1186/s12916-020-01703-w
    BACKGROUND: Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a priori to perform analyses separately in men and women based on suggestive evidence that associations may differ by sex.

    METHODS: In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P bilirubin were instrumented in a 2-sample MR to test for a potential causal effect of bilirubin on CRC risk in 52,775 CRC cases and 45,940 matched controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colon Cancer Family Registry (CCFR), and the Colorectal Transdisciplinary (CORECT) study.

    RESULTS: The associations between circulating UCB levels and CRC risk differed by sex (Pheterogeneity = 0.008). Among men, higher levels of UCB were positively associated with CRC risk (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.04-1.36; per 1-SD increment of log-UCB). In women, an inverse association was observed (OR = 0.86 (0.76-0.97)). In the MR analysis of the main UGT1A1 SNP (rs6431625), genetically predicted higher levels of total bilirubin were associated with a 7% increase in CRC risk in men (OR = 1.07 (1.02-1.12); P = 0.006; per 1-SD increment of total bilirubin), while there was no association in women (OR = 1.01 (0.96-1.06); P = 0.73). Raised bilirubin levels, predicted by instrumental variables excluding rs6431625, were suggestive of an inverse association with CRC in men, but not in women. These differences by sex did not reach formal statistical significance (Pheterogeneity ≥ 0.2).

    CONCLUSIONS: Additional insight into the relationship between circulating bilirubin and CRC is needed in order to conclude on a potential causal role of bilirubin in CRC development.

    Matched MeSH terms: Bilirubin/metabolism
  4. Grace-Lynn C, Chen Y, Latha LY, Kanwar JR, Jothy SL, Vijayarathna S, et al.
    Molecules, 2012 Nov 23;17(12):13937-47.
    PMID: 23178309 DOI: 10.3390/molecules171213937
    The aim of the present study was to evaluate the hepatoprotective activity of lantadene A against acetaminophen-induced liver toxicity in mice was studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin, along with histo-pathological analysis. Silymarin was used as positive control. A bimodal pattern of behavioural toxicity was exhibited by the lantadene A-treated group at the beginning of the treatment. However, treatment with lantadene A and silymarin resulted in an increase in the liver weight compared with the acetaminophen treated group. The results of the acetaminophen-induced liver toxicity experiments showed that mice treated with lantadene A (500 mg/kg) showed a significant decrease in the activity of ALT, AST and ALP and the level of bilirubin, which were all elevated in the acetaminophen treated group (p < 0.05). Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen. The lantadene A-treated group showed remarkable protective effects against histopathological alterations, with comparable results to the silymarin treated group. The current study confirmed the hepatoprotective effects of lantadene A against the model hepatotoxicant acetaminophen, which is likely related to its potent antioxidative activity.
    Matched MeSH terms: Bilirubin/metabolism
  5. Muhsain SN, Lang MA, Abu-Bakar A
    Toxicol Appl Pharmacol, 2015 Jan 1;282(1):77-89.
    PMID: 25478736 DOI: 10.1016/j.taap.2014.11.010
    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection.
    Matched MeSH terms: Bilirubin/metabolism*
  6. Kamisah Y, Lim JJ, Lim CL, Asmadi AY
    PLoS One, 2014;9(2):e89248.
    PMID: 24586630 DOI: 10.1371/journal.pone.0089248
    Phenylhydrazine, a hemolytic agent, is widely used as a model of experimental hyperbilirubinemia. Palm tocotrienol-rich fraction (TRF) was shown to exert beneficial effects in hyperbilirubinemic rat neonates.
    Matched MeSH terms: Bilirubin/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links