Displaying publications 1 - 20 of 53 in total

  1. Johan UUM, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Colloids Surf B Biointerfaces, 2021 Sep;205:111882.
    PMID: 34087776 DOI: 10.1016/j.colsurfb.2021.111882
    Carboxylesterases (CEs) are members of prominent esterase, and as their name imply, they catalyze the cleavage of ester linkages. By far, a considerable number of novel CEs have been identified to investigate their exquisite physiological and biochemical properties. They are abundant enzymes in nature, widely distributed in relatively broad temperature range and in various sources; both macroorganisms and microorganisms. Given the importance of these enzymes in broad industries, interest in the study of their mechanisms and structural-based engineering are greatly increasing. This review presents the current state of knowledge and understanding about the structure and functions of this ester-metabolizing enzyme, primarily from bacterial sources. In addition, the potential biotechnological applications of bacterial CEs are also encompassed. This review will be useful in understanding the molecular basis and structural protein of bacterial CEs that are significant for the advancement of enzymology field in industries.
    Matched MeSH terms: Biocatalysis
  2. Mohd. Radzi, M.R., Uzir, M.H.
    Biocatalytic reaction is a type of reaction which uses enzyme or whole-cell as a (bio)-catalyst to achieve a desired conversion, under controlled conditions in a bioreactor. Temperature produces opposed effects on enzyme activity and stability, and is therefore a key variable in any biocatalytic processes. An exothermic biocatalytic reaction, in a continuous-stirred-tank reactor (CSTR), was analyzed where dynamic equations (non-linear differential equations) could be derived from the Michaelis-Menten and Arrhenius equations, by performing mass and energy balances on the reactor. In this work, the effects of the different parameters such as dilution rate, proportional control constant and dimensionless total enzyme concentration, on the stability of the system, were studied. The stability of the reaction could be analyzed, based on the ODE (ordinary differential equation), solved using the numerical technique in MATLAB® and the analytical investigation using Mathematica.® The numerical analysis can be carried out by considering the hase-plane behaviour and bifurcation diagrams of the dynamic equations, while the analytical analysis using Mathematica® can be undertaken by evaluating the eigenvalues of the system. In order to model the operational stability of biocatalysts, modulation factors need to be considered so that a proper design of bioreactors can be done. Temperature, as a key variable in such bioprocess systems, can be conveniently optimized through the use of appropriate models.
    Matched MeSH terms: Biocatalysis
  3. Moin SF, Omar MN
    Protein Pept Lett, 2014;21(8):707-13.
    PMID: 23855667
    Laccases belong to the multicopper binding protein family that catalysis the reduction of oxygen molecule to produce water. These enzymes are glycosylated proteins and have been isolated and purified from fungi, bacteria, plant, insects and lichens. The variety of commercial and industrial application of laccases has attracted much attention towards the research addressing different aspects of the protein characterization, production and fit for purpose molecule. Here we briefly discuss the purification, catalytic mechanism in light of available understanding of structure-function relationship and the tailoring side of the protein, which has been the subject of recent research. Purification strategy of laccases is a method of choice and is facilitated by increased production of the enzyme. The structure-function relationship has given insights to unfold the catalytic mechanism. Site directed mutagenesis and other modification at C-terminal end or surrounding environment of copper centres have shown promising results to fit for purpose aspect, with a lot remains to be explored in glycosylation status and its alteration.
    Matched MeSH terms: Biocatalysis*
  4. Monajemi H, Md Zain S, Ishida T, Wan Abdullah WAT
    Biochem. Cell Biol., 2019 08;97(4):497-503.
    PMID: 30444637 DOI: 10.1139/bcb-2018-0220
    The search for the mechanism of ribosomal peptide bond formation is still ongoing. Even though the actual mechanism of peptide bod formation is still unknown, the dominance of proton transfer in this reaction is known for certain. Therefore, it is vital to take the quantum mechanical effects on proton transfer reaction into consideration; the effects of which were neglected in all previous studies. In this study, we have taken such effects into consideration using a semi-classical approach to the overall reaction mechanism. The M06-2X density functional with the 6-31++G(d,p) basis set was used to calculate the energies of the critical points on the potential energy surface of the reaction mechanism, which are then used in transition state theory to calculate the classical reaction rate. The tunnelling contribution is then added to the classical part by calculating the transmission permeability and tunnelling constant of the reaction barrier, using the numerical integration over the Boltzmann distribution for the symmetrical Eckart potential. The results of this study, which accounts for quantum effects, indicates that the A2451 ribosomal residue induces proton tunnelling in a stepwise peptide bond formation.
    Matched MeSH terms: Biocatalysis*
  5. Abdul Aziz Ahmad, Raihan Othman, Faridah Yusof, Mohd Firdaus Abdul Wahab
    Sains Malaysiana, 2014;43:459-465.
    A hybrid biofuel cell, a zinc-air cell employing laccase as the oxygen reduction catalyst is investigated. A simple cell design is employed; a membraneless single chamber and a freely suspended laccase in the buffer electrolyte. The cell is characterised based on its open-circuit voltage, power density profile and galvanostatic discharge at 0.5 mA. The activity of laccase as an oxidoreductase is substantiated from the cell discharge profiles. The use of air electrode in the cell design enhanced the energy output by 14%. The zinc-air biofuel cell registered an open-circuit voltage of 1.2 V and is capable to deliver a maximum power density of 1.1 mWcm-2 at 0.4 V. Despite its simple design features, the power output is comparable to that of biocatalytic cell utilising a much more complex system design.
    Matched MeSH terms: Biocatalysis
  6. Bilal M, Lam SS, Iqbal HMN
    Environ Pollut, 2022 Jan 15;293:118582.
    PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582
    The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
    Matched MeSH terms: Biocatalysis
  7. Morsy SAGZ, Ahmad Tajudin A, Ali MSM, Shariff FM
    Front Microbiol, 2020;11:572309.
    PMID: 33101245 DOI: 10.3389/fmicb.2020.572309
    The world today is in a quest for new means of environmental remediation as the methods currently used are not sufficient to halt the damage. Mostly, a global direction is headed toward a shift from traditional chemical-based methods to a more ecofriendly alternative. In this context, biocatalysis is seen as a cost-effective, energy saving, and clean alternative. It is meant to catalyze degradation of recalcitrant chemicals in an easy, rapid, green, and sustainable manner. One already established application of biocatalysis is the removal of dyes from natural water bodies using enzymes, notably oxidoreductases like laccases, due to their wide range of substrate specificity. In order to boost their catalytic activity, various methods of enhancements have been pursued including immobilization of the enzyme on different support materials. Aside from increased catalysis, immobilized laccases have the advantages of higher stability, better durability against harsh environment conditions, longer half-lives, resistance against protease enzymes, and the ability to be recovered for reuse. This review briefly outlines the current methods used for detoxification and decolorization of dye effluents stressing on the importance of laccases as a revolutionary biocatalytic solution to this environmental problem. This work highlights the significance of laccase immobilization and also points out some of the challenges and opportunities of this technology.
    Matched MeSH terms: Biocatalysis
  8. Wang S, Lee WJ, Wang Y, Tan CP, Lai OM, Wang Y
    J Agric Food Chem, 2020 Aug 05;68(31):8391-8403.
    PMID: 32511921 DOI: 10.1021/acs.jafc.0c01346
    Medium-chain diacylglycerol (MCD), medium-long-chain diacylglycerol (MLCD), and long-chain diacylglycerol (LCD) were prepared through enzymatic esterification using different conditions at temperatures of 55-70 °C and reaction times of 1.5-5 h and in the presence of 5-6% Novozym 435. Subsequently, purification was performed using three different techniques, namely, molecular distillation (MD), deodorization (DO), and silica gel column chromatography (SGCC). Variations in terms of the physicochemical and thermodynamic properties, crystallization properties, and kinetics of the diacylglycerols (DAGs) before and after purification were determined. Irrespective of the DAG chain lengths, SGCC was able to produce samples with high DAG purity (96-99 wt %), followed by MD (58-79 wt %) and DO (39-59 wt %). A higher 1,3-DAG/1,2-DAG ratio was recorded for all samples, with the highest ratio recorded for SGCC purified samples. Regardless of the purification techniques used, the solid fat content (SFC) profiles of crude samples with steep curves were altered post-purification, showing a gradual increment in SFC along with increasing temperature. Modification of the Avrami constant and coefficient suggested the modification of the crystal growth mechanism post-purification. Crystallization and melting temperatures of products with a higher DAG purity were shifted to a higher temperature region. Variations were also reflected in terms of the crystal polymorphism, whereby the α and β' crystals transitioned into the more stable β form in purified samples accompanied by modification in the microstructures and crystal sizes. However, there was insignificant change in the morphology of MLCD crystal after purification, except for the decrease in crystal sizes. In conclusion, synthesis of MCD, MLCD, and LCD comprising different DAG purities had distinctive SFC profiles, thermodynamic properties, crystallization kinetics, and crystal morphologies, which can be further incorporated into the preparation of a variety of fat products to obtain end products with desired characteristics.
    Matched MeSH terms: Biocatalysis
  9. Fong MJB, Loy ACM, Chin BLF, Lam MK, Yusup S, Jawad ZA
    Bioresour Technol, 2019 Oct;289:121689.
    PMID: 31252316 DOI: 10.1016/j.biortech.2019.121689
    In the present study, catalytic pyrolysis of Chlorella vulgaris biomass was conducted to analyse the kinetic and thermodynamic performances through thermogravimetric approach. HZSM-5 zeolite, limestone (LS), bifunctional HZSM-5/LS were used as catalysts and the experiments were heated from 50 to 900 °C at heating rates of 10-100 °C/min. Iso-conversional model-free methods such as Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Starink's, and Vyazovkin (V) were employed to evaluate the kinetic parameters meanwhile the thermodynamic parameters were determined by using FWO and KAS methods. The calculated EA values of non-catalytic and catalytic pyrolysis of HZSM-5 zeolite, LS, and bifunctional HZSM-5/LS were determined to be in the range of 156.16-158.10 kJ/mol, 145.26-147.84 kJ/mol, 138.81-142.06 kJ/mol, and 133.26 kJ/mol respectively. The results have shown that catalytic pyrolysis with the presence of bifunctional HZSM-5/LS resulted to a lower average EA and ΔH compared to HZSM-5, and LS which indicated less energy requirement in the process.
    Matched MeSH terms: Biocatalysis
  10. Nasaruddin RR, Alam MZ, Jami MS
    Bioresour Technol, 2014 Feb;154:155-61.
    PMID: 24384322 DOI: 10.1016/j.biortech.2013.11.095
    A green technology of biodiesel production focuses on the use of enzymes as the catalyst. In enzymatic biodiesel synthesis, suitable solvent system is very essential to reduce the inhibition effects of the solvent to the enzymes. This study produced ethanol-based biodiesel from a low-cost sludge palm oil (SPO) using locally-produced Candida cylindracea lipase from fermentation of palm oil mill effluent (POME) based medium. The optimum levels of ethanol-to-SPO molar ratio and enzyme loading were found to be 4:1 and 10 U/25 g of SPO respectively with 54.4% w/w SPO yield of biodiesel and 21.7% conversion of free fatty acid (FFA) into biodiesel. Addition of tert-butanol at 2:1 tert-butanol-to-SPO molar ratio into the ethanol-solvent system increased the yield of biodiesel to 71.6% w/w SPO and conversion of FFA into biodiesel to 28.8%. The SPO and ethanol have promising potential for the production of renewable biodiesel using enzymatic-catalyzed esterification and transesterification.
    Matched MeSH terms: Biocatalysis/drug effects
  11. Fukumoto J, Ismail NI, Kubo M, Kinoshita K, Inoue M, Yuasa K, et al.
    J. Biochem., 2013 Nov;154(5):465-73.
    PMID: 23946505 DOI: 10.1093/jb/mvt077
    Oligopeptidase B (OPB) is a member of the prolyl oligopeptidase (POP) family of serine proteases. OPB in trypanosomes is an important virulence factor and potential pharmaceutical target. Characteristic structural features of POP family members include lack of a propeptide and presence of a β-propeller domain (PD), although the role of the β-PD has yet to be fully understood. In this work, residues Glu(172), Glu(490), Glu(524) and Arg(689) in Trypanosoma brucei OPB (Tb OPB), which are predicted to form inter-domain salt bridges, were substituted for Gln and Ala, respectively. These mutants were evaluated in terms of catalytic properties and stability. A negative effect on kcat/Km was obtained following mutation of Glu(172) or Arg(689). In contrast, the E490Q mutant exhibited markedly decreased thermal stability, although this mutation had less effect on catalytic properties compared to the E172Q and R689A mutants. Trypsin digestion showed that the boundary regions between the β-PD and catalytic domains (CDs) of the E490Q mutant are unfolded with heat treatment. These results indicated that Glu(490) in the CD plays a role in stabilization of Tb OPB, whereas Glu(172) in the β-PD is critical for the catalytic activity of Tb OPB.
    Matched MeSH terms: Biocatalysis*
  12. Jahangirian H, Haron MJ, Silong S, Yusof NA
    J Oleo Sci, 2011;60(6):281-6.
    PMID: 21606615
    Phenyl fatty hydroxamic acids (PFHAs) were synthesized from canola or palm oils and phenyl hydroxylamine (FHA) catalyzed by Lipozyme TL IM or RM IM. The reaction was carried out by shaking the reaction mixture at 120 rpm. The optimization was carried out by changing the reaction parameters, namely; temperature, organic solvent, amount and kind of enzyme, period of reaction and the mol ratio of reactants. The highest conversion was obtained when the reaction was carried out under the following conditions: temperature, 39°C; solvent, petroleum ether; kind and amount of lipase, 80 mg Lipozyme TL IM/mmol oil; reaction period, 72 h and FHA-oil ratio, 7.3 mmol FHA/ mmol oil. The highest conversion percentage of phenyl hydroxylaminolysis of the Ladan and Kristal brands commercial canola oils, palm stearin and palm kernel oils were 55.6, 52.2, 51.4 and 49.7 %, respectively.
    Matched MeSH terms: Biocatalysis*
  13. Linggang S, Phang LY, Wasoh MH, Abd-Aziz S
    Appl Biochem Biotechnol, 2012 May;167(1):122-31.
    PMID: 22528646 DOI: 10.1007/s12010-012-9592-0
    Sago pith residue is one of the most abundant lignocellulosic biomass which can serve as an alternative cheap substrate for fermentable sugars production. This residue is the fibrous waste left behind after the starch extraction process and contains significant amounts of starch (58%), cellulose (23%), hemicellulose (9.2%) and lignin (3.9%). The conversion of sago pith residue into fermentable sugars is commonly performed using cellulolytic enzymes or known as cellulases. In this study, crude cellulases were produced by two local isolates, Trichoderma asperellum UPM1 and Aspergillus fumigatus, UPM2 using sago pith residue as substrate. A. fumigatus UPM2 gave the highest FPase, CMCase and β-glucosidase activities of 0.39, 23.99 and 0.78 U/ml, respectively, on day 5. The highest activity of FPase, CMCase and β-glucosidase by T. asperellum UPM1 was 0.27, 12.03 and 0.42 U/ml, respectively, on day 7. The crude enzyme obtained from A. fumigatus UPM2 using β-glucosidase as the rate-limiting enzyme (3.9, 11.7 and 23.4 IU) was used for the saccharification process to convert 5% (w/v) sago pith residue into reducing sugars. Hydrolysis of sago pith residue using crude enzyme containing β-glucosidase with 23.4 IU, produced by A. fumigatus UPM2 gave higher reducing sugars production of 20.77 g/l with overall hydrolysis percentage of 73%.
    Matched MeSH terms: Biocatalysis
  14. Khor GK, Sim JH, Kamaruddin AH, Uzir MH
    Bioresour Technol, 2010 Aug;101(16):6558-61.
    PMID: 20363621 DOI: 10.1016/j.biortech.2010.03.047
    In order to characterize enzyme activity and stability corresponding to temperature effects, thermodynamic studies on commercial immobilized lipase have been carried out via enzymatic transesterification. An optimum temperature of 40 degrees C was obtained in the reaction. The decreasing reaction rates beyond the optimum temperature indicated the occurrence of reversible enzyme deactivation. Thermodynamic studies on lipase denaturation exhibited a first-order kinetics pattern, with considerable stability through time shown by the lipase as well. The activation and deactivation energies were 22.15 kJ mol(-1) and 45.18 kJ mol(-1), respectively, implying more energy was required for the irreversible denaturation of the enzyme to occur. At water content of 0.42%, the initial reaction rate and FAME yield displayed optimum values of 3.317 g/L min and 98%, respectively.
    Matched MeSH terms: Biocatalysis
  15. Chan XY, Hong KW, Yin WF, Chan KG
    Sci Rep, 2016 Jan 28;6:20016.
    PMID: 26817720 DOI: 10.1038/srep20016
    Tropical carnivorous plant, Nepenthes, locally known as "monkey cup", utilises its pitcher as a passive trap to capture insects. It then secretes enzymes into the pitcher fluid to digest the insects for nutrients acquisition. However, little is known about the microbiota and their activity in its pitcher fluid. Eighteen bacteria phyla were detected from the metagenome study in the Nepenthes pitcher fluid. Proteobacteria, Bacteroidetes and Actinobacteria are the dominant phyla in the Nepenthes pitcher fluid. We also performed culturomics approach by isolating 18 bacteria from the Nepenthes pitcher fluid. Most of the bacterial isolates possess chitinolytic, proteolytic, amylolytic, and cellulolytic and xylanolytic activities. Fifteen putative chitinase genes were identified from the whole genome analysis on the genomes of the 18 bacteria isolated from Nepenthes pitcher fluid and expressed for chitinase assay. Of these, six clones possessed chitinase activity. In conclusion, our metagenome result shows that the Nepenthes pitcher fluid contains vast bacterial diversity and the culturomic studies confirmed the presence of biocatalytic bacteria within the Nepenthes pitcher juice which may act in symbiosis for the turn over of insects trapped in the Nepenthes pitcher fluid.
    Matched MeSH terms: Biocatalysis
  16. Jacob AG, Wahab RA, Mahat NA
    Enzyme Microb Technol, 2021 Aug;148:109807.
    PMID: 34116744 DOI: 10.1016/j.enzmictec.2021.109807
    Oil palm leaves (OPL) silica (SiO2) can replace the energy-intensive, commercially produced SiO2. Moreover, the agronomically sourced biogenic SiO2 is more biocompatible and cost-effective enzyme support, which properties could be improved by the addition of magnetite (Fe3O4) and graphene oxide (GO) to yield better ternary support to immobilize enzymes, i.e., Candida rugosa lipase (CRL). This study aimed to optimize the Candida rugosa lipase (CRL immobilization onto the ternary OPL-silica-magnetite (Fe3O4)-GO (SiO2/Fe3O4/GO) support, for use as biocatalyst for ethyl valerate (EV) production. Notably, this is the first study detailing the CRL/SiO2/Fe3O4/GO biocatalyst preparation for rapid and high yield production of ethyl valerate (EV). AFM and FESEM micrographs revealed globules of CRL covalently bound to GL-A-SiO2/Fe3O4/GO; similar to Raman and UV-spectroscopy results. FTIR spectra revealed amide bonds at 3478 cm-1 and 1640 cm-1 from covalent interactions between CRL and GL-A-SiO2/Fe3O4/GO. Optimum immobilization conditions were 4% (v/v) glutaraldehyde, 8 mg/mL CRL, at 16 h stirring in 150 mM NaCl at 30 °C, offering 24.78 ± 0.26 mg/g protein (specific activity = 65.24 ± 0.88 U/g). The CRL/SiO2/Fe3O4/GO yielded 77.43 ± 1.04 % of EV compared to free CRL (48.75 ± 0.70 %), verifying the suitability of SiO2/Fe3O4/GO to hyperactivate and stabilize CRL for satisfactory EV production.
    Matched MeSH terms: Biocatalysis
  17. Sivapragasam M, Moniruzzaman M, Goto M
    Biotechnol J, 2020 Apr;15(4):e1900073.
    PMID: 31864234 DOI: 10.1002/biot.201900073
    Ionic liquids (ILs), a class of materials with unique physicochemical properties, have been used extensively in the fields of chemical engineering, biotechnology, material sciences, pharmaceutics, and many others. Because ILs are very polar by nature, they can migrate into the environment with the possibility of inclusion in the food chain and bioaccumulation in living organisms. However, the chemical natures of ILs are not quintessentially biocompatible. Therefore, the practical uses of ILs must be preceded by suitable toxicological assessments. Among different methods, the use of microorganisms to evaluate IL toxicity provides many advantages including short generation time, rapid growth, and environmental and industrial relevance. This article reviews the recent research progress on the toxicological properties of ILs toward microorganisms and highlights the computational prediction of various toxicity models.
    Matched MeSH terms: Biocatalysis
  18. Gunny AA, Arbain D, Nashef EM, Jamal P
    Bioresour Technol, 2015 Apr;181:297-302.
    PMID: 25661309 DOI: 10.1016/j.biortech.2015.01.057
    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance.
    Matched MeSH terms: Biocatalysis/drug effects
  19. Lau SC, Lim HN, Basri M, Fard Masoumi HR, Ahmad Tajudin A, Huang NM, et al.
    PLoS One, 2014;9(8):e104695.
    PMID: 25127038 DOI: 10.1371/journal.pone.0104695
    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.
    Matched MeSH terms: Biocatalysis*
  20. Zaidan UH, Abdul Rahman MB, Othman SS, Basri M, Abdulmalek E, Rahman RN, et al.
    Biosci Biotechnol Biochem, 2011;75(8):1446-50.
    PMID: 21821960
    The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K(m) and V(max), were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K(m) values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V(max,app)>V(max)). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.
    Matched MeSH terms: Biocatalysis*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links