Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Mohd Nadzir M, Nurhayati RW, Idris FN, Nguyen MH
    Polymers (Basel), 2021 Feb 10;13(4).
    PMID: 33578978 DOI: 10.3390/polym13040530
    Bacterial exopolysaccharides (EPSs) are an essential group of compounds secreted by bacteria. These versatile EPSs are utilized individually or in combination with different materials for a broad range of biomedical field functions. The various applications can be explained by the vast number of derivatives with useful properties that can be controlled. This review offers insight on the current research trend of nine commonly used EPSs, their biosynthesis pathways, their characteristics, and the biomedical applications of these relevant bioproducts.
    Matched MeSH terms: Biochemical Phenomena
  2. Mohammad Haniff MA, Muhammad Hafiz S, Wahid KA, Endut Z, Wah Lee H, Bien DC, et al.
    Sci Rep, 2015;5:14751.
    PMID: 26423893 DOI: 10.1038/srep14751
    In this work, the piezoresistive effects of defective graphene used on a flexible pressure sensor are demonstrated. The graphene used was deposited at substrate temperatures of 750, 850 and 1000 °C using the hot-filament thermal chemical vapor deposition method in which the resultant graphene had different defect densities. Incorporation of the graphene as the sensing materials in sensor device showed that a linear variation in the resistance change with the applied gas pressure was obtained in the range of 0 to 50 kPa. The deposition temperature of the graphene deposited on copper foil using this technique was shown to be capable of tuning the sensitivity of the flexible graphene-based pressure sensor. We found that the sensor performance is strongly dominated by the defect density in the graphene, where graphene with the highest defect density deposited at 750 °C exhibited an almost four-fold sensitivity as compared to that deposited at 1000 °C. This effect is believed to have been contributed by the scattering of charge carriers in the graphene networks through various forms such as from the defects in the graphene lattice itself, tunneling between graphene islands, and tunneling between defect-like structures.
    Matched MeSH terms: Biochemical Phenomena
  3. Ibrahim RW, Ahmad MZ, Al-Janaby HF
    Saudi J Biol Sci, 2016 Jan;23(1):S45-9.
    PMID: 26858564 DOI: 10.1016/j.sjbs.2015.09.012
    A mutation is ultimately essential for adaptive evolution in all populations. It arises all the time, but is mostly fixed by enzymes. Further, most do consider that the evolution mechanism is by a natural assortment of variations in organisms in line for random variations in their DNA, and the suggestions for this are overwhelming. The altering of the construction of a gene, causing a different form that may be communicated to succeeding generations, produced by the modification of single base units in DNA, or the deletion, insertion, or rearrangement of larger units of chromosomes or genes. This altering is called a mutation. In this paper, a mathematical model is introduced to this reality. The model describes the time and space for the evolution. The tool is based on a complex domain for the space. We show that the evolution is distributed with the hypergeometric function. The Boundedness of the evolution is imposed by utilizing the Koebe function.
    Matched MeSH terms: Biochemical Phenomena
  4. Roslan, M.H., Azis, N., Jasni, J., Ibrahim, Z.
    MyJurnal
    Top-Oil Temperature (TOT) is one of the basic components to estimate the Hot-Spot temperature (HST) of the transformers. This paper presents an alternative TOT model based on the heat transfer theory that utilises Nonlinear Thermal Resistance (NTR) and Lumped Capacitance (LC) approaches. It is applied in a thermal-electrical analogy and the heat transfer equivalent equation is determined. This model is tested on a measured TOT of 250 MVA ONAF and 400 MVA ONAF transformers obtained from IEC 60076-7 and previous research. A comparison of TOT is carried out with the existing models IEC 60076-7 exponential and IEEE Loading Guide clause 7 methods. It is found that the thermal model based on the NTR and LC approach could determine the measured TOT closer than the existing methods available in the standards.
    Matched MeSH terms: Biochemical Phenomena
  5. Ng SF, Rouse J, Sanderson D, Eccleston G
    Pharmaceutics, 2010 May 18;2(2):209-223.
    PMID: 27721352
    Synthetic membranes used in Franz diffusion cells for topical formulation quality assessment should provide least resistance to drug diffusion. In this study, the diffusion rates of ibuprofen across thirteen membranes were determined using Franz diffusion cells. Correlation of the membrane thickness, pore size and MWCO with drug fluxes was also made. The drug diffusion results showed that the porous membranes were categorized into high-flux (8-18 mg/cm²/h) and low-flux (0.1-3 mg/cm²/h) membranes. The drug fluxes did not show strong correlations (r² < 0.99) with membrane parameters. Synthetic membranes can give variable drug fluxes, thus investigators should be careful in choosing membrane for formulation quality assessment.
    Matched MeSH terms: Biochemical Phenomena
  6. Ling I, Kumari H, Mirzamani M, Sobolev AN, Garvey CJ, Atwood JL, et al.
    Chem Commun (Camb), 2018 Sep 25;54(77):10824-10827.
    PMID: 30140821 DOI: 10.1039/c8cc05650a
    We report on the assembly of three-fold axially compressed icosahedral arrays of the bowl shaped p-sulfonatocalix[4]arene molecules in the solid-state, intricately bound to dipicolinate and yttrium(iii) ions, with the compression reflected in Hirshfeld surface analyses. Solution studies show dissolution of the icosahedra intact, but with a geometrical rearrangement to regular icosahedra.
    Matched MeSH terms: Biochemical Phenomena
  7. Wong KJ, Johar M, Koloor SSR, Petrů M, Tamin MN
    Polymers (Basel), 2020 Sep 22;12(9).
    PMID: 32971855 DOI: 10.3390/polym12092162
    It is necessary to consider the influence of moisture damage on the interlaminar fracture toughness for composite structures that are used for outdoor applications. However, the studies on the progressive variation of the fracture toughness as a function of moisture content M (%) is rather limited. In this regard, this study focuses on the characterization of mode II delamination of carbon/epoxy composites conditioned at 70 °C/85% relative humidity (RH). End-notched flexure test is conducted for specimens aged at various moisture absorption levels. Experimental results reveal that mode II fracture toughness degrades with the moisture content, with a maximum of 23% decrement. A residual property model is used to predict the variation of the fracture toughness with the moisture content. Through numerical simulations, it is found that the approaches used to estimate the lamina and cohesive properties are suitable to obtain reliable simulation results. In addition, the damage initiation is noticed during the early loading stage; however, the complete damage is only observed when the numerical peak load is achieved. Results from the present research could serve as guidelines to predict the residual properties and simulate the mode II delamination behavior under moisture attack.
    Matched MeSH terms: Biochemical Phenomena
  8. Mohamed Ikhtifar Rafi, Cheah, Yoke Kqueen
    MyJurnal
    Bacterial endophytes are found on all types of plants and is a potential source of bioactive compounds which can be utilized to fight against multi-resistant pathogens and could be further develop into new leads for antibiotic development. However, the research done on the bacterial endophytes is relatively new and has potential to grow as it is theorized that each plant has one or more bacterial endophytes inhabiting them. This review aims to review the studies that have been done previously and give new insights on the latest trends in this field of research.
    Matched MeSH terms: Biochemical Phenomena
  9. Liu YC, Chan KG, Chang CY
    Front Microbiol, 2015;6:1226.
    PMID: 26617576 DOI: 10.3389/fmicb.2015.01226
    Bacterial cells sense their population density and respond accordingly by producing various signal molecules to the surrounding environments thereby trigger a plethora of gene expression. This regulatory pathway is termed quorum sensing (QS). Plenty of bacterial virulence factors are controlled by QS or QS-mediated regulatory systems and QS signal molecules (QSSMs) play crucial roles in bacterial signaling transduction. Moreover, bacterial QSSMs were shown to interfere with host cell signaling and modulate host immune responses. QSSMs not only regulate the expression of bacterial virulence factors but themselves act in the modulation of host biology that can be potential therapeutic targets.
    Matched MeSH terms: Biochemical Phenomena
  10. Kumarasingha R, Preston S, Yeo TC, Lim DS, Tu CL, Palombo EA, et al.
    Parasit Vectors, 2016;9(1):187.
    PMID: 27036205 DOI: 10.1186/s13071-016-1458-9
    Parasitic roundworms (nematodes) cause substantial morbidity and mortality in livestock animals globally, and considerable productivity losses to farmers. The control of these nematodes has relied largely on the use of a limited number of anthelmintics. However, resistance to many of these these anthelmintics is now widespread, and, therefore, there is a need to find new drugs to ensure sustained and effective treatment and control into the future.
    Matched MeSH terms: Biochemical Phenomena
  11. Ong SG, Ming LC, Lee KS, Yuen KH
    Pharmaceutics, 2016;8(3).
    PMID: 27571096 DOI: 10.3390/pharmaceutics8030025
    The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32%) and F2(98%)], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm), MS (357 nm) and NS (813 nm)], but with essentially similar encapsulation efficiencies (about 93%). Results indicated that the extent of bioavailability of griseofulvin was improved 1.7-2.0 times when given in the form of liposomes (F1) compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2), compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm) did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation.
    Matched MeSH terms: Biochemical Phenomena
  12. Lim HP, Liew WYH, Melvin GJH, Jiang ZT
    Materials (Basel), 2021 Mar 29;14(7).
    PMID: 33805462 DOI: 10.3390/ma14071677
    This paper reviews the phase structures and oxidation kinetics of complex Ti-Al alloys at oxidation temperatures in the range of 600-1000 °C. The mass gain and parabolic rate constants of the alloys under isothermal exposure at 100 h (or equivalent to cyclic exposure for 300 cycles) is compared. Of the alloying elements investigated, Si appeared to be the most effective in improving the oxidation resistance of Ti-Al alloys at high temperatures. The effect of alloying elements on the mechanical properties of Ti-Al alloys is also discussed. Significant improvement of the mechanical properties of Ti-Al alloys by element additions has been observed through the formation of new phases, grain refinement, and solid solution strengthening.
    Matched MeSH terms: Biochemical Phenomena
  13. Clarke AK, Ho HE, Rossi-Ashton JA, Taylor RJK, Unsworth WP
    Chem Asian J, 2019 Mar 25.
    PMID: 30908897 DOI: 10.1002/asia.201900309
    Indoles are amongst the most important class of heteroaromatics in organic chemistry, being commonly found in biologically active natural products and therapeutically useful compounds. The synthesis of indoles is therefore important and several methods for their synthesis that make use of silver(I) catalysts and reagents have been developed in recent years. This Focus Review contains, to the best of our knowledge, a comprehensive coverage of silver-mediated indole forming reactions since the first reaction of this type was reported in 2004.
    Matched MeSH terms: Biochemical Phenomena
  14. Solhan Yahya, Norinsan Kamil Othman, Abd Razak Daud, Azman Jalar
    Sains Malaysiana, 2014;43:1083-1087.
    The effect of scan rate on the accuracy of corrosion parameter in evaluating the efficiency of rice straw extract as corrosion inhibitor has been studied via potentiodynamic polarization measurement. Scan rate in the range of low (0.1- 0.25 mV s-1), medium (0.5-1.0 mV s-1) and high (1.5-2.0 mV s-1) scan were carried out on the carbon steel in 1 M HCl. The corrosion parameters such as corrosion rate, polarization resistance and corrosion current density have been analyzed through Tafel polarization curve. High scan rate gave poor accuracy of corrosion parameter compared to medium and low scan. Medium scan at 1.0 mV s-1 has been chosen as the optimum scan rate due to the approached steady-state and small disturbance of charged current. As a result, the addition of rice straw extract in 1 M HCl has reduced the values of corrosion current density in both cathodic and anodic reactions signified the corrosion has been inhibited. The efficiency of rice straw extracts as a corrosion inhibitor offer good result as much as 86%.
    Matched MeSH terms: Biochemical Phenomena
  15. Hashim Y
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1199-1201.
    PMID: 29448557 DOI: 10.1166/jnn.2018.13956
    This study explores optimization of resistance load (R-Load) of four silicon nanowire transistor (SiNWT)-based static random-access memory (SRAM) cell. Noise margins and inflection voltage of butterfly characteristics with static power consumption of SRAM cell are used as limiting factors in this optimization. Range of R-Load used in this study was 20-1000 KΩ with Vdd = 1 V. Results indicate that optimization depends critically on resistance load value. The optimized range of R-Load is 100-200 KΩ.
    Matched MeSH terms: Biochemical Phenomena
  16. Hussin AS, Farouk AE, Greiner R, Salleh HM, Ismail AF
    World J Microbiol Biotechnol, 2007 Dec;23(12):1653-60.
    PMID: 27517819 DOI: 10.1007/s11274-007-9412-9
    Over two hundred bacteria were isolated from the halosphere, rhizosphere and endophyte of Malaysian maize plantation and screened for phytases activity. Thirty isolates with high detectable phytase activity were chosen for media optimization study and species identification. Ten types of bacterial phytase producers have been discovered in this study, which provides opportunity for characterization of new phytase(s) and various commercial and environmental applications. The majority of the bacterial isolates with high detectable phytase activity were of endophyte origin and 1.6% of the total isolates showed phytase activity of more than 1 U/ml. Most of the strains produced extra-cellular phytase and Staphylococcus lentus ASUIA 279 showed the highest phytase activity of 1.913 U/ml. All 30 species used in media optimization study exhibit favorable enzyme production when 1% rice bran was included in the growth media.
    Matched MeSH terms: Biochemical Phenomena
  17. Guan Ling Sim, Mohd Nizar Hamidon, Kamilu Iman Usman
    MyJurnal
    This study presents the sensitivity of graphene nanoribbon (GNR) when exposed to ammonia gas at room temperature. Alumina were used as a substrate and coated with GNR as sensing film for ammonia gas detection. Four different concentration of GNR in the category of maximum, high, low, and minimum were prepared. Each category of GNR will be dispersed on alumina substrate with area of 1cm2 and 4cm2. 30nm of gold contacts are sputtered on both ends of the sensing film. The ammonia gas can be detected by measuring the changes in resistance. The GNR as ammonia sensor shows good responses at room temperature. In repeatability test, maximum GNR shows least variation when exposed to ammonia with the value of 1.01% (4cm2) and 2.12% (1cm2). In a sensitivity test, 0.25% to 1.00% of ammonia gas was used and tested on maximum GNR. Maximum GNR on 4cm2 substrate shows higher sensitivity as compared to 1cm2. Reaction time of GNR on ammonia gas decreased as the concentration of ammonia increased. Larger surface area of sensing element required lesser reaction time.
    Matched MeSH terms: Biochemical Phenomena
  18. Arif MA, Mohamad MS, Abd Latif MS, Deris S, Remli MA, Mohd Daud K, et al.
    Comput Biol Med, 2018 11 01;102:112-119.
    PMID: 30267898 DOI: 10.1016/j.compbiomed.2018.09.015
    Metabolic engineering involves the modification and alteration of metabolic pathways to improve the production of desired substance. The modification can be made using in silico gene knockout simulation that is able to predict and analyse the disrupted genes which may enhance the metabolites production. Global optimization algorithms have been widely used for identifying gene knockout strategies. However, their productions were less than theoretical maximum and the algorithms are easily trapped into local optima. These algorithms also require a very large computation time to obtain acceptable results. This is due to the complexity of the metabolic models which are high dimensional and contain thousands of reactions. In this paper, a hybrid algorithm of Cuckoo Search and Minimization of Metabolic Adjustment is proposed to overcome the aforementioned problems. The hybrid algorithm searches for the near-optimal set of gene knockouts that leads to the overproduction of metabolites. Computational experiments on two sets of genome-scale metabolic models demonstrate that the proposed algorithm is better than the previous works in terms of growth rate, Biomass Product Couple Yield, and computation time.
    Matched MeSH terms: Biochemical Phenomena
  19. Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, et al.
    Crit Rev Biotechnol, 2018 Nov 15.
    PMID: 30431379 DOI: 10.1080/07388551.2018.1489778
    Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.
    Matched MeSH terms: Biochemical Phenomena
  20. Ekarizan Shaffie1, Ahmad Kamil Arshad, Ramadhansyah Putra Jaya, Khairil Azman Masri, Wardati Hashim
    MyJurnal
    Moisture susceptibiltiy is one of the common types of pavement failure found in asphaltic pavements.
    Climatic factor such as temperature and moisture has a profound effect on the durability of hot mix
    asphalt pavements. Couple with high traffic loads/stresses made stripping of pavement materials
    inevitable. Thus, it has become necessary to improve the efficiency of the design of hot mix asphalt
    (HMA) for better performance and safe riding comfort. This study investigates and discusses the findings
    on the stripping performance of dense graded Superpave mixes using two type of binder; un-modified
    binder and rubber polymer modified binder (RPM) using Superpave mix design (AASHTO TP4)
    procedure. The RPM binder consists of 4% of both rubber crumb and EVA polymer. Modified Lottman
    and Resilient Modulus tests were used to evaluate the stripping performance in these mixtures and this
    study also documents the effect of different temperature on tensile strength ratio (TSR) and resilient
    modulus ratio (RMR) on the HMA mixtures. Experimental evidences show that the RPM binder mixes
    were found to have significantly improved the resistance to moisture damage compared to unmodified
    binder mixtures. The RPM binder application may able to alleviate problems related to aggregate
    stripping and potholes on our road. Statistical analysis showed good correlation between resilient
    modulus and tensile strength ratio.
    Matched MeSH terms: Biochemical Phenomena
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links