Displaying all 6 publications

  1. Zare D, Ghazali HM
    Food Chem, 2017 Apr 15;221:936-943.
    PMID: 27979297 DOI: 10.1016/j.foodchem.2016.11.071
    There is an increasing concern about the quality and quality assessment procedures of seafood. In the present study, a model to assess fish quality based on biogenic amine contents using fuzzy logic model (FLM) is proposed. The fish used was sardine (Sardinella sp.) where the production of eight biogenic amines was monitored over fifteen days of storage at 0, 3 and 10°C. Based on the results, histamine, putrescine and cadaverine were selected as input variables and twelve quality grades were considered for quality of fish as output variables for the FLM. Input data were processed by rules established in the model and were then defuzzified according to defined output variables. Finally, the quality of fish was evaluated using the designed model and Pearson correlation between storage times with quality of fish showed r=0.97, 0.95 and 1 for fish stored at 0, 3 and 10°C, respectively.
    Matched MeSH terms: Biogenic Amines/analysis*
  2. Tameem AA, Saad B, Makahleh A, Salhin A, Saleh MI
    Talanta, 2010 Sep 15;82(4):1385-91.
    PMID: 20801345 DOI: 10.1016/j.talanta.2010.07.004
    A sorbent material based on a newly synthesized hydrazone ligand, 4-hydroxy-N'-[(E)-(2-hydroxyphenyl)methylidene]benzohydrazide was prepared by immobilizing the ligand into a silica sol-gel matrix. The capability of the sorbent material for the extraction of seven biogenic amines (BAs), i.e., tryptamine (TRY), beta-phenylethylamine (PEA), putrescine (PUT), cadaverine (CAD), histamine (HIS), tyramine (TYR), and spermidine (SPD) was studied. Under the adopted conditions, the sorbent showed good selectivity towards PUT, CAD, HIS and SPD (% extraction (%E)>96) while %E for TYR, TRY and PEA were 82.0, 78.9 and 46.4%, respectively. The sorbent could be used up to six extraction cycles for SPD, CAD and PUT and was applied to the determination of food samples ("budu", ketchup, orange juice, soy sauce) that were spiked with 20 mg L(-1) of the BAs. The extracted analytes were derivatized with dansyl chloride before the HPLC determination. With the exception of HIS and TYR in "budu" sample, reasonable recoveries were found for the other analytes in all the tested food samples.
    Matched MeSH terms: Biogenic Amines/analysis*
  3. Saaid M, Saad B, Ali AS, Saleh MI, Basheer C, Lee HK
    J Chromatogr A, 2009 Jul 3;1216(27):5165-70.
    PMID: 19481215 DOI: 10.1016/j.chroma.2009.04.091
    Hollow fibre liquid-phase microextraction with in situ derivatization using dansyl chloride has been successfully developed for the high-performance liquid chromatography-ultraviolet (HPLC-UV) determination of the biogenic amines (tryptamine, putrescine, cadaverine, histamine, tyramine, spermidine) in food samples. Parameters affecting the performance of the in situ derivatization process such as type of extraction solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; acceptor phase, 0.1M HCl; extraction time, 30 min; extraction temperature, 26 degrees C; without addition of salt), enrichment factors varying from 47 to 456 were achieved. Good linearity of the analytes was obtained over a concentration range of 0.1-5 microg mL(-1) (with correlation coefficients of 0.9901-0.9974). The limits of detection and quantification based on a signal-to-noise ratio of 3-10, ranged from 0.0075 to 0.030 microg mL(-1) and 0.03 to 0.10 microg mL(-1), respectively. The relative standard deviations based on the peak areas for six replicate analysis of water spiked with 0.5 microg mL(-1) of each biogenic amine were lower than 7.5%. The method was successfully applied to shrimp sauce and tomato ketchup samples, offering an interesting alternative to liquid-liquid extraction and solid phase extraction for the analysis of biogenic amines in food samples.
    Matched MeSH terms: Biogenic Amines/analysis*
  4. Zare D, Muhammad K, Bejo MH, Ghazali HM
    J Food Sci, 2015 Feb;80(2):T479-83.
    PMID: 25586500 DOI: 10.1111/1750-3841.12752
    Scombroid fish poisoning is usually associated with consumption of fish containing high levels of histamine. However, reports indicate that some cases have responded to antihistamine therapy while ingested histamine levels in these cases were low. Potentiation of histamine toxicity by some biogenic amines, and release of endogenous histamine by other compounds such as cis-urocanic acid (UCA) are some hypotheses that have been put forth to explain this anomaly. Very little is known about the effects of storage conditions on the production of both UCA isomers and biogenic amines in tuna. Thus, the production of trans- and cis-UCA, histamine, putrescine, and cadaverine in tuna during 15 d of storage at 0, 3, and 10 °C and 2 d storage at ambient temperature were monitored. The initial trans- and cis-UCA contents in fresh tuna were 2.90 and 1.47 mg/kg, respectively, whereas the levels of putrescine and cadaverine were less than 2 mg/kg, and histamine was not detected. The highest levels of trans- and cis-UCA were obtained during 15 d storage at 3 °C (23.74 and 21.79 mg/kg, respectively) while the highest concentrations of histamine (2796 mg/kg), putrescine (220.32 mg/kg) and cadaverine (1045.20 mg/kg) were obtained during storage at room temperature, 10 and 10 °C, respectively. Histamine content increased considerably during storage at 10 °C whereas trans- and cis-UCA contents changed slightly. The initial trans-UCA content decreased during storage at ambient temperature. Thus, unlike histamine, concentrations of trans- and cis-UCA did not result in elevated levels during storage of tuna.
    Matched MeSH terms: Biogenic Amines/analysis
  5. Sahudin MA, Su'ait MS, Tan LL, Lee YH, Abd Karim NH
    Anal Bioanal Chem, 2019 Sep;411(24):6449-6461.
    PMID: 31392436 DOI: 10.1007/s00216-019-02025-4
    Biogenic amines have attracted interest among researchers because of their importance as biomarkers in determining the quality of food freshness in the food industry. A rapid and simple technique that is able to detect biogenic amines is needed. In this work, a new optical sensing material for one of the biogenic amines, histamine, based on a new zinc(II) salphen complex was developed. The binding of zinc(II) complexes without an electron-withdrawing group (complex 1) and with electron-withdrawing groups (F, complex 2; Cl, complex 3) to histamine resulted in enhancement of fluorescence. All complexes exhibited high affinity for histamine [binding constant of (7.14 ± 0.80) × 104, (3.33 ± 0.03) × 105, and (2.35 ± 0.14) × 105 M-1, respectively]. Complex 2 was chosen as the sensing material for further development of an optical sensor for biogenic amines in the following step since it displayed enhanced optical properties in comparison with complexes 1 and 3. The optical sensor for biogenic amines used silica microparticles as the immobilisation support and histamine as the analyte. The optical sensor had a limit of detection for histamine of 4.4 × 10-12 M, with a linear working range between 1.0 × 10-11 and 1.0 × 10-6 M (R2 = 0.9844). The sensor showed good reproducibility, with a low relative standard deviation (5.5 %). In addition, the sensor exhibited good selectivity towards histamine and cadaverine over other amines, such as 1,2-phenylenediamine, triethylamine, and trimethylamine. Recovery and real sample studies suggested that complex 2 could be a promising biogenic amine optical sensing material that can be applied in the food industry, especially in controlling the safety of food for it to remain fresh and healthy for consumption.
    Matched MeSH terms: Biogenic Amines/analysis*
  6. Saaid M, Saad B, Rahman IA, Ali AS, Saleh MI
    Talanta, 2010 Jan 15;80(3):1183-90.
    PMID: 20006072 DOI: 10.1016/j.talanta.2009.09.006
    Three sorbent materials (A18C6-MS, DA18C6-MS and AB18C6-MS) based on the crown ether ligands, 1-aza-18-crown-6, 1,4,10,13-tetraoxa-7,16-diazacyclo octadecane and 4'-aminobenzo-18-crown-6, respectively, were prepared by the chemical immobilization of the ligand onto mesoporous silica support. The sorbents were characterized by FT-IR, scanning electron microscopy-energy dispersive X-ray microanalysis, elemental analysis and nitrogen adsorption-desorption test. The applicability of the sorbents for the extraction of biogenic amines by the batch sorption method was extensively studied and evaluated as a function of pH, biogenic amines concentration, contact time and reusability. Under the optimized conditions, all the sorbents exhibited highest selectivity toward spermidine (SPD) compared to other biogenic amines (tryptamine, putrescine, histamine and tyramine). Among the sorbents, AB18C6-MS offer the highest capacity and best selectivity towards SPD in the presence of other biogenic amines. The AB18C6-MS sorbent can be repeatedly used three times as there was no significant degradation in the extraction of the biogenic amines (%E>85). The optimized procedure was successfully applied for the separation of SPD in food samples prior to the reversed-phase high performance liquid chromatography separation.
    Matched MeSH terms: Biogenic Amines/analysis
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links