Displaying all 3 publications

Abstract:
Sort:
  1. Mehdikhani M, Khalaj N, Chung TY, Mazlan M
    Proc Inst Mech Eng H, 2014 Aug;228(8):819-23.
    PMID: 25205748 DOI: 10.1177/0954411914547714
    Feet displacement is recognized to be an important element in standing and is also linked to postural instability in elderly people with diabetes. This study investigates standing balance in diabetic patients in four asymmetric feet displacements. Quiet standing balance was investigated using the Biodex Balance System in 18 diabetic patients and compared with 18 control elderly subjects. The four standing conditions, namely, comfortable feet position, preferred feet position with a stance width of 17 cm and 15° angle between the medial borders, feet side by side, and heel side by side with a 30° angle between medial edges of feet were evaluated (i.e. eyes opened, eyes closed). The overall stability was calculated by measuring anterior-posterior and medial-lateral indices in standing conditions. Differences among feet positions were compared using an analysis of variance and the independent t-test. The diabetic patients were unstable in the medial-lateral direction when standing with feet side by side versus heel side by side with a 30° angle between medial edges of feet (p = 0.012 and 0.011, respectively), while in controls the anterior-posterior stability scores between standing in preferred foot position with stance width of 17 cm and 15° angle between the medial borders versus feet side by side, and heel side by side with a 30° angle between medial edges of feet versus preferred foot position with stance width of 17 cm and 15° angle between the medial borders had significant difference (p 
    Matched MeSH terms: Biomedical Engineering/instrumentation
  2. As'arry A, Md Zain MZ, Mailah M, Hussein M
    Proc Inst Mech Eng H, 2013 Nov;227(11):1171-80.
    PMID: 23901066 DOI: 10.1177/0954411913494325
    Patients with hand tremors may find routine activities such as writing and holding objects affected. In response to this problem, an active control technique has been examined in order to lessen the severity of tremors. In this article, an online method of a hybrid proportional-integral control with active force control strategy for tremor attenuation is presented. An intelligent mechanism using iterative learning control is incorporated into the active force control loop to approximate the estimation mass parameter. Experiments were conducted on a dummy hand model placed horizontally in a tremor test rig. When activated by a shaker in the vertical direction, this resembles a postural tremor condition. In the proportional-integral plus active force control, a linear voice coil actuator is used as the main active tremor suppressive element. A sensitivity analysis is presented to investigate the robustness of the proposed controller in a real-time control environment. The findings of this study demonstrate that the intelligent active force control and iterative learning controller show excellent performance in reducing tremor error compared to classic pure proportional, proportional-integral and hybrid proportional-integral plus active force control controllers.
    Matched MeSH terms: Biomedical Engineering/instrumentation*
  3. Ibrahim F, Thio TH, Faisal T, Neuman M
    Sensors (Basel), 2015 Mar 23;15(3):6947-95.
    PMID: 25806872 DOI: 10.3390/s150306947
    This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.
    Matched MeSH terms: Biomedical Engineering/instrumentation*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links