Displaying all 4 publications

Abstract:
Sort:
  1. Zabidi MA, Yusoff NM, Kader ZS
    Indian J Pathol Microbiol, 2012 Jan-Mar;55(1):47-51.
    PMID: 22499300 DOI: 10.4103/0377-4929.94855
    Platelets release more than 30 cytokines to provide primary hemostatic function. In addition, platelets are also known to release antimicrobial peptides upon activation by thrombin.
    Matched MeSH terms: Blood Platelets/chemistry*
  2. Li D, Zhang H, Hsu-Hage BH, Wahlqvist ML, Sinclair AJ
    Eur J Clin Nutr, 2001 Dec;55(12):1036-42.
    PMID: 11781668
    The aims of this study were to investigate (1) platelet phospholipid (PL) polyunsaturated fatty acid (PUFA) composition in subjects who were the Melbourne Chinese migrants, compared with those who were the Melbourne Caucasians and (2) the relationship between platelet PL PUFA and intake of fish, meat and PUFA.
    Matched MeSH terms: Blood Platelets/chemistry*
  3. Ngah NA, Dias GJ, Tong DC, Mohd Noor SNF, Ratnayake J, Cooper PR, et al.
    Molecules, 2021 Nov 25;26(23).
    PMID: 34885714 DOI: 10.3390/molecules26237131
    BACKGROUND: Platelet-rich fibrin (PRF) has gained popularity in craniofacial surgery, as it provides an excellent reservoir of autologous growth factors (GFs) that are essential for bone regeneration. However, the low elastic modulus, short-term clinical application, poor storage potential and limitations in emergency therapy use restrict its more widespread clinical application. This study fabricates lyophilised PRF (Ly-PRF), evaluates its physical and biological properties, and explores its application for craniofacial tissue engineering purposes.

    MATERIAL AND METHODS: A lyophilisation method was applied, and the outcome was evaluated and compared with traditionally prepared PRF. We investigated how lyophilisation affected PRF's physical characteristics and biological properties by determining: (1) the physical and morphological architecture of Ly-PRF using SEM, and (2) the kinetic release of PDGF-AB using ELISA.

    RESULTS: Ly-PRF exhibited a dense and homogeneous interconnected 3D fibrin network. Moreover, clusters of morphologically consistent cells of platelets and leukocytes were apparent within Ly-PRF, along with evidence of PDGF-AB release in accordance with previously reports.

    CONCLUSIONS: The protocol established in this study for Ly-PRF preparation demonstrated versatility, and provides a biomaterial with growth factor release for potential use as a craniofacial bioscaffold.

    Matched MeSH terms: Blood Platelets/chemistry
  4. Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525349 DOI: 10.3390/ijms22031269
    Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient's quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
    Matched MeSH terms: Blood Platelets/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links