Displaying all 6 publications

Abstract:
Sort:
  1. Eg KP, Thomas RJ, Masters IB, McElrea MS, Marchant JM, Chang AB
    Pediatr Pulmonol, 2020 09;55(9):2444-2451.
    PMID: 32584469 DOI: 10.1002/ppul.24924
    INTRODUCTION/AIM: A validated tool for scoring bronchitis during flexible bronchoscopy (FB) is potentially useful for clinical practice and research. We aimed to develop a bronchoscopically defined bronchitis scoring system in children (BScore) based on our pilot study.

    METHODS: Children undergoing FB were prospectively enrolled. Their FB was digitally recorded and assessed (two clinicians blinded to each other and clinical history) for six features: secretion amount (six-point scale), secretion color (BronkoTest, 0-8), mucosal oedema (0-3), ridging (0-3), erythema (0-3), and pallor (0-3) based on pre-determined criteria. We correlated (Spearman's rho) each feature with bronchoalveolar lavage (BAL) neutrophil percentage (neutrophil%). BScore was then derived using models with combinations of the six features that best related to airway BAL neutrophil%. The various models of BScore were plotted against BAL neutrophil% using receiver operating characteristic (ROC) curves.

    RESULTS: We analyzed 142 out of 150 children enrolled. Eight children were excluded for unavailability of BAL cytology or FB recordings. Chronic/recurrent cough was the commonest indication for FB (75%). The median age was 3 years (IQR, 1.5-5.3 years). Secretion amount (r = 0.42) and color (r = 0.46), mucosal oedema (r = 0.42), and erythema (r = 0.30) significantly correlated with BAL neutrophil%, P 10%).

    CONCLUSION: This prospective study has developed the first validated bronchitis scoring tool in children based on bronchoscopic visual inspection of airways. Further validation in other cohorts is however required.

    Matched MeSH terms: Bronchoalveolar Lavage Fluid/cytology
  2. Staples CA, Brown MJ, Bai TR, Chan NH
    Can Assoc Radiol J, 1996 Apr;47(2):136-9.
    PMID: 8612087
    Matched MeSH terms: Bronchoalveolar Lavage Fluid/cytology
  3. Zamri-Saad M, Mera HR
    PMID: 11666033
    An experiment was designed to study the in vivo effect of Pasteurella haemolytica A2 infection on the phagocytosis activity of caprine broncho-alveolar macrophages and the extent of pneumonic lesions. Twelve healthy local Kacang goats, about 7 months of age, were divided into two groups of six. Goats in group 1 were inoculated intratracheally with 4 ml inoculum containing 2.8 x 10(9) colony-forming units (CFU)/ml of Staphylococcus aureus. Goats in group 2 were inoculated intratracheally with 4 ml of inoculum containing 9.5 x 10(8) CFU/ml of Pasteurella haemolytica A2 isolated earlier from pneumonic lungs of goat. At intervals of 3 and 7 days post-challenge five goats from each group were killed and the lungs were washed with sterile phosphate-buffered saline. Smears were prepared from the lung washing fluid and the number of macrophages with phagocytic activity was determined. At day 3 post-infection, goats of both groups showed a similar pattern of pneumonic lesion. The lung washing fluid of goats in group 2 was found to contain numerous neutrophils and macrophages. Goats in group 2 showed significantly (P < 0.05) higher extent of lung lesions than group 1. Similarly, the average extent of lung lesions was significantly (P < 0.05) more severe in group 2 at day 7 post-infection. The lung washing fluid contained mostly macrophages. The phagocytic activity following S. aureus infection was more efficient and significantly (P < 0.01) higher compared with infection by P. haemolytica A2. There were weak correlations between the extent of pneumonic lesion and the phagocytic activity. Thus, goats with poor phagocytic activity were likely to develop more extensive lung lesions.
    Matched MeSH terms: Bronchoalveolar Lavage Fluid/cytology
  4. Ismail N, Jambari NN, Zareen S, Akhtar MN, Shaari K, Zamri-Saad M, et al.
    Toxicol Appl Pharmacol, 2012 Mar 1;259(2):257-62.
    PMID: 22266348 DOI: 10.1016/j.taap.2012.01.003
    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5-10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2mg/kg with no effect at the lowest dose of 0.2mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics.
    Matched MeSH terms: Bronchoalveolar Lavage Fluid/cytology
  5. Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Tan YT
    Int J Nanomedicine, 2011;6:2351-66.
    PMID: 22072872 DOI: 10.2147/IJN.S25363
    Inhaled corticosteroids provide unique systems for local treatment of asthma or chronic obstructive pulmonary disease. However, the use of poorly soluble drugs for nebulization has been inadequate, and many patients rely on large doses to achieve optimal control of their disease. Theoretically, nanotechnology with a sustained-release formulation may provide a favorable therapeutic index. The aim of this study was to determine the feasibility of using sterically stabilized phospholipid nanomicelles of budesonide for pulmonary delivery via nebulization.
    Matched MeSH terms: Bronchoalveolar Lavage Fluid/cytology
  6. Lim JC, Goh FY, Sagineedu SR, Yong AC, Sidik SM, Lajis NH, et al.
    Toxicol Appl Pharmacol, 2016 07 01;302:10-22.
    PMID: 27089844 DOI: 10.1016/j.taap.2016.04.004
    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6-8weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3% dimethyl sulfoxide) was administered intraperitoneally 1h before and 11h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model.
    Matched MeSH terms: Bronchoalveolar Lavage Fluid/cytology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links