Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Puthucheary SD
    Med J Malaysia, 2009 Dec;64(4):266-74.
    PMID: 20954549 MyJurnal
    Melioidosis is an important cause of sepsis in the tropics, is caused by an environmental saprophyte--B. pseudomallei. It affects mainly adults with underlying predisposing condition such as diabetes. The range of symptoms varies from benign and localized abscesses, to severe community-acquired pneumonia to acute fulminating septicaemia with multiple abscesses often leading to death. B. pseudomallei is an intracellular pathogen and some of the virulence mechanisms that govern the complex interaction between the organism and the host have been elucidated. Isolation of B. pseudomallei from bodily fluids of patients remains the "gold standard" in diagnosis but a sensitive and specific serological test can lend support to the diagnosis of melioidosis. Ceftazidime is the treatment of choice for severe melioidosis, but the response is slow. Maintenance or eradication therapy for a prolonged period is necessary to prevent relapse and recurrence. Monitoring IgG antibody levels may be useful as a guideline to determine the duration of eradication therapy.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  2. Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Abdul Aziz S
    PLoS One, 2016;11(9):e0162348.
    PMID: 27635652 DOI: 10.1371/journal.pone.0162348
    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00-1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05-1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15-2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent's biological processes and clay retains water and nutrients.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  3. Francis A, Aiyar S, Yean CY, Naing L, Ravichandran M
    Diagn Microbiol Infect Dis, 2006 Jun;55(2):95-9.
    PMID: 16626918
    Isolation and culture of Burkholderia pseudomallei remains the main stay in the diagnosis of melioidosis. Thus, the search for selective and differential media for B. pseudomallei has been ongoing. A number of such media have been reported with varying efficacy. Ashdown medium is the most established selective medium for the isolation of B. pseudomallei. There are no reports of differential media differentiating B. pseudomallei from Burkholderia cepacia. This report documents such a selective and differentiating medium for B. pseudomallei. Of a total of 1042 clinical specimens containing mixed flora and gram-negative isolates that were tested on this medium, 16 of the specimens yielded B. pseudomallei. The isolation rate was found to be 1.5%. This medium was found to be simple and inexpensive, can be made by small laboratories, and called as Francis medium. Based on the colony morphology and color, a preliminary report can be made within 18-24 h for the presence of B. pseudomallei. Our study showed that this medium had an overall sensitivity of 78.4% with a specificity of 92.2%. The use of this medium as an early diagnostic tool will help to reduce mortality and morbidity of melioidosis patients.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  4. Dance DA
    Acta Trop, 2000 Feb 05;74(2-3):115-9.
    PMID: 10674638
    There is remarkably little known about the incidence of melioidosis outside a few countries (Thailand, Australia, Singapore and Malaysia). Presumably it is widespread in tropical south east Asia. Elsewhere there are tantalising glimpses of the tip of what may be a large iceberg. Since a specific diagnosis of melioidosis requires awareness on the part of clinicians, and the existence of a laboratory capable of isolating and identifying Burkholderia pseudomallei, a luxury not available in most rural tropical areas, the size of this iceberg is likely to remain unknown for the foreseeable future. There is mounting evidence that the disease is endemic in the Indian sub-continent and the Caribbean, and there have been unsubstantiated reports of recent cases in South Africa and the Middle East. It is unclear whether melioidosis has really spread to such areas relatively recently, or has been there but unrecognised for a long time. Almost all cases diagnosed in temperate climates have been imported from the tropics, with the exception of a unique outbreak which occurred in France in the mid-1970s. With increasing world wide travel of both humans and other animals, the potential exists for melioidosis to spread to new and fertile pastures.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  5. Lim WK, Gurdeep GS, Norain K
    Med J Malaysia, 2001 Dec;56(4):471-7.
    PMID: 12014768
    Melioidosis is a potentially deadly infection that can affect any organ system. Reports of melioidosis of the ENT/head and neck region are relatively uncommon. Four cases are presented: (i) parotid abscess evolving into necrotising fasciitis, (ii) acute sinusitis and parapharyngeal cellulitis resulting in upper airway obstruction, (iii) acute suppurative lymphadenitis (iv) and chronic suppurative otitis media causing meningoencephalitis. Three of the four cases are believed to be unique, as a literature review of melioidosis in ENT/head and neck is also presented. Some practical issues of management are also discussed. Not suspecting melioidosis does not change contemporary empirical broadspectrum antibiotic therapy. The value of suspicion or on confirmation of diagnosis lies in anticipating and planning for rapid change.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  6. Halder D, Zainal N, Wah CM, Haq JA
    Ann Trop Paediatr, 1998 Jun;18(2):161-4.
    PMID: 9924578
    We report a case of meningitis and one of fatal septicaemia in neonates due to Burkholderia pseudomallei and review the literature on neonatal melioidosis. Pneumonia was the primary presentation and was complicated by shock in the latter case. The epidemiological findings suggest that the cases reported from Malaysia were community-acquired in contrast with those from the USA and Thailand.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  7. Choi JY, Hii KC, Bailey ES, Chuang JY, Tang WY, Yuen Wong EK, et al.
    Am J Trop Med Hyg, 2020 02;102(2):388-391.
    PMID: 31769397 DOI: 10.4269/ajtmh.19-0625
    Burkholderia pseudomallei infections are prevalent in Southeast Asia and northern Australia and often misdiagnosed. Diagnostics are often neither sensitive nor rapid, contributing up to 50% mortality rate. In this 2018 pilot study, we enrolled 100 patients aged 6 months-79 years from Kapit Hospital in Sarawak, Malaysia, with symptoms of B. pseudomallei infection. We used three different methods for the detection of B. pseudomallei: a real-time polymerase chain reaction (PCR) assay, a rapid lateral flow immunoassay, and the standard-of-care bacterial culture-the gold standard. Among the 100 participants, 24 (24%) were positive for B. pseudomallei by one or more of the detection methods. Comparing the two individual diagnostic methods against the gold standard-bacterial culture-of any positive test, there was low sensitivity for each test (25-44%) but high specificity (93-98%). It seems clear that more sensitive diagnostics or a sensitive screening diagnostic followed by specific confirmatory diagnostic is needed for this disease.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  8. Liew SM, Tay ST, Wongratanacheewin S, Puthucheary SD
    Trop Biomed, 2012 Mar;29(1):160-8.
    PMID: 22543616 MyJurnal
    Melioidosis has been recognized as an important cause of sepsis in the tropics. The disease caused by an environmental saprophyte Burkholderia pseudomallei, affects mostly adults with underlying immunocompromised conditions. In this study, the enzymatic profiles of 91 clinical and 9 environmental isolates of B. pseudomallei were evaluated using the APIZYM system, in addition to assessment of protease, phospholipase C and sialidase activities using agar plate methods and other assays. The activity of 10 enzymes - alkaline phosphatase, esterase, esterase lipase, lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-β-glucosaminidase were detected in >75% of the clinical isolates. The majority of B. pseudomallei isolates in this study exhibited protease and phospholipase activities. No sialidase activity was detected. Five Burkholderia thailandensis isolates had similar APIZYM profiles as B. pseudomallei clinical isolates except for the lower detection rate for N-acetyl-β-glucosaminidase. The subtle differences in the number of enzymes secreted and the levels of enzymatic activities of phenotypically identical clinical and environmental strains of B. pseudomallei give weight to the fact that the causative agent of melioidodis originates from the environment.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  9. Kandasamy Y, Somasundaram P
    Singapore Med J, 2007 Apr;48(4):e109-10.
    PMID: 17384864
    We present a previously-healthy 12-year old girl from a rural community and who was admitted to a district general hospital in Malaysia with coagulopathy and septic shock. Despite receiving intensive care, she succumbed to her illness. Blood cultures grew Burkholderia pseudomallei. Melioidosis is an unusual cause of paediatric Gram-negative sepsis among children in Malaysia.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  10. Eu LC, Ong KC, Hiu J, Vadivelu J, Nathan S, Wong KT
    Mod Pathol, 2014 May;27(5):657-64.
    PMID: 24186135 DOI: 10.1038/modpathol.2013.184
    Burkholderia pseudomallei causes a potentially fatal infection called melioidosis. We have developed a nonfluorescent, colorimetric in situ hybridization assay using a specific probe to target 16s rRNA of B. pseudomallei in formalin-fixed, paraffin-embedded infected tissues for diagnostic purposes and to study infectious disease pathology. A 63-base pair DNA probe was synthesized and labeled with digoxigenin by PCR. Probe specificity was confirmed by BLAST analysis and by testing on appropriate microbial controls. The in situ hybridization assay was specifically and consistently positive for B. pseudomallei, showing strongly and crisply stained, single bacillus and bacilli clusters in mainly inflamed tissues in seven human acute melioidosis cases and experimentally infected mouse tissues. Intravascular and extravascular bacilli were detected in both intracellular and extracellular locations in various human organs, including lung, spleen, kidney, liver, bone marrow, and aortic mycotic aneurysm, particularly in the inflamed areas. Intravascular, intracellular bacteria in melioidosis have not been previously reported. Although the identity of infected intravascular leukocytes has to be confirmed, extravascular, intracellular bacilli appear to be found mainly within macrophages and neutrophils. Rarely, large intravascular, extracellular bacillary clusters/emboli could be detected in both human and mouse tissues. B. cepacia and non-Burkholderia pathogens (16 microbial species) all tested negative. Nonpathogenic B. thailandensis showed some cross-hybridization but signals were less intense. This in situ hybridization assay could be usefully adapted for B. pseudomallei identification in other clinical specimens such as pus and sputum.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  11. Hassan MR, Vijayalakshmi N, Pani SP, Peng NP, Mehenderkar R, Voralu K, et al.
    PMID: 24974653
    Burkholderia pseudomallei, the causative agent of melioidosis is an important cause of morbidity and mortality particularly among diabetics. We evaluated 228 isolates of B. pseudomallei for antimicrobial sensitivity during 2005-2010 using the disc diffusion technique, of which 144 were obtained from blood culture. More than 90% of the strains were susceptible to cefoperazone, ceftazidime, chloramphenicol and imipenem. Eighty-two percent of the isolates were susceptible to tetracycline and amoxicillin/clavulanate. The susceptibilities to ciprofloxacin was 78% and to trimethoprim-sulfamethoxezole was 47%. The susceptibilities to aminoglycoside antibiotics were low (21% to gentamicin and 6% to amikacin). The susceptibilities were similar between isolates from females and males, bacteremic and abacteremic cases, diabetics and non-diabetics, pneumonia and non-pneumonia cases and between those who died and those who survived. Our findings show antibiotic susceptibility patterns are not a major factor in determining outcomes of B. pseudomallei infection. Monitoring the drug susceptibilities among B. pseudomallei isolates needs to be conducted regularly to guide empiric therapy for melioidosis, as it causes high mortality, especially among diabetic cases.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  12. Puthucheary SD, Puah SM, Chai HC, Thong KL, Chua KH
    J. Mol. Microbiol. Biotechnol., 2012;22(3):198-204.
    PMID: 22846664 DOI: 10.1159/000338985
    Burkholderia pseudomallei is the causative agent of melioidosis. We initiated this investigation with a virulent and an attenuated strain of B. pseudomallei. Pulsed-field gel electrophoresis was carried out initially for macrogenomic comparison of both strains of B. pseudomallei. However, the pulsotypes obtained were identical and therefore we applied a subtractive hybridization technique to distinguish and determine the possible differences between the two strains. Six virulence strain-specific DNA fragments were obtained and the encoding homolog proteins were identified as a xenobiotic-responsive element family of transcriptional regulator, a hypothetical protein, an unknown protein, a plasmid recombination enzyme, a regulatory protein and a putative hemolysin activator protein. A combination of at least three of these determinants was identified in 45 clinical isolates when screening was carried out with self-designed multiplex PCR targeting the six putative virulent determinants. Our data demonstrated that different combinations of the six putative virulence genes were present in the clinical isolates indicating their probable role in the pathogenesis of B. pseudomallei infections.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  13. Hin HS, Ramalingam R, Chunn KY, Ahmad N, Ab Rahman J, Mohamed MS
    Am J Trop Med Hyg, 2012 Oct;87(4):737-40.
    PMID: 22826499 DOI: 10.4269/ajtmh.2012.12-0165
    Co-infection of melioidosis and leptospirosis is uncommon. We report here four such cases, confirmed by blood culture for melioidosis and blood polymerase-chain reaction for leptospirosis, which occurred among rescuers involved in a search and rescue operation for a young man who was suspected to have drowned in Lubuk Yu, a recreational forest in Pahang, Malaysia. Despite treatment, three of the patients died from the co-infection.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  14. Mohamed MS, Khair MT, How SH, Rajalingam R, Sahhir K, Norazah A, et al.
    Med J Malaysia, 2012 Jun;67(3):293-7.
    PMID: 23082420 MyJurnal
    We analyzed the epidemiological data of all people who were involved in the search and rescue operation in Lubuk Yu, a natural recreational forest with waterfall and stream. The hospital admission records of the cases who fulfilled the case definition and the environmental samples result taken at Lubuk Yu recreational area were studied. 153 people were exposed to this outbreak, 85 (55.5%) were professional rescuers from various government agencies and 68 (44.5%) were villagers. 21 fulfilled the case definition. Ten cases were confirmed melioidosis, six melioidosis alone and four coinfected with leptospirosis. There were eight deaths in this outbreak, seven were villagers and one professional rescuer. Overall case fatality was 70%. All confirmed melioidosis cases and seven who died had diabetes mellitus. The morbidity rate were higher among the villagers, 23.5% compared to professional rescuers, 5.9%. The case fatality rate were also higher in this group which was 100% compared to 33.3% in professional rescuers. The soil and water samples in Lubuk Yu recreational area were positive for leptospira and Burkholderia pseudomallei. The presence of co-infection and co-morbidities especially diabetes mellitus among the exposed led to the high mortality in this outbreak hence a high index of suspicion is important among the healthcare professionals in the management of melioidosis cases. To avoid similar incident in future, search and rescue operation should be only conducted by professional rescuers with appropriate personal protective equipment. A register of rescuers should be maintained for surveillance and follow up if necessary.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  15. Roesnita B, Tay ST, Puthucheary SD, Sam IC
    Trans R Soc Trop Med Hyg, 2012 Feb;106(2):131-3.
    PMID: 22112687 DOI: 10.1016/j.trstmh.2011.10.007
    Routine use of selective media improves diagnosis of Burkholderia pseudomallei, but resources may be limited in endemic developing countries. To maximise yield in the relatively low-prevalence setting of Kuala Lumpur, Malaysia, B. pseudomallei selective agar and broth were compared with routine media for 154 respiratory specimens from patients with community-acquired disease. Selective media detected three additional culture-positive specimens and one additional melioidosis patient, at a consumables cost of US$75. Burkholderia pseudomallei was not isolated from 74 diabetic foot ulcer samples. Following careful local evaluation, focused use of selective media may be cost-effective.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*
  16. Engelthaler DM, Bowers J, Schupp JA, Pearson T, Ginther J, Hornstra HM, et al.
    PLoS Negl Trop Dis, 2011 Oct;5(10):e1347.
    PMID: 22028940 DOI: 10.1371/journal.pntd.0001347
    Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  17. Lee SH, Ooi SK, Mahadi NM, Tan MW, Nathan S
    PLoS One, 2011;6(3):e16707.
    PMID: 21408228 DOI: 10.1371/journal.pone.0016707
    Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  18. Azura MN, Norazah A, Kamel AG, Zorin SA
    PMID: 21323173
    We have analysed DNA fingerprinting patterns by pulsed-field gel electrophoresis (PFGE) of 52 unrelated Burkholderia pseudomallei strains isolated from septicemic and localized infections from Malaysian subjects. A total of 38 PFGE types were observed among 36 septicemic and 16 localized strains with no predominant pattern. Type 25 was seen in 2 epidemiologically related strains, suggesting human to human transmission. Twelve PFGE types were shared among 26 strains (21 septicemic and 5 localized) showing close genetic relatedness with coefficient of similarity of 0.81 to 1.0. The other 26 strains (15 septicemic and 11 localized) were unrelated as shown by the similarity coefficient of < 0.8. This study showed that our B. pseudomallei strains in Malaysia were mainly heterogenous with no predominant type both in septicemic or localized strains.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  19. Nathan SA, Puthucheary SD
    Malays J Pathol, 2005 Jun;27(1):3-7.
    PMID: 16676686
    B. pseudomallei has been shown to persist intracellularly in melioidosis patients until reactivated by decreasing immunocompetence. We have shown by transmission electron microscopy the internalization of B. pseudomallei by human macrophages via conventional phagocytosis enclosed within membrane-bound vacuoles or phagosomes. Ferritin labeled lysosomes provided evidence of phagosome-lysosome fusion. Ingested bacilli were designated as "intact" or "damaged" on the basis of their ultrastructural features. An intact bacterium was seen with low electron opaque central nuclear region surrounded by dense bacterial cytoplasm, bounded externally by bacterial plasma membrane and cell wall. In contrast, B. pseudomallei were considered damaged when seen with cavitation within the central nuclear region, separation of bacterial cytoplasm from the cell wall, herniation of cytoplasmic contents and lamination of bacterial cell wall and its surrounding electron transparent zone. Our observations indicate that the microbicidal mechanism(s) in B. pseudomallei-infected macrophages failed to ensure complete clearance of the organism and this failure probably facilitates intracellular persistence and proliferation, and this may be one of the survival strategies adopted by this organism.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
  20. Raja NS, Ahmed MZ, Singh NN
    J Postgrad Med, 2005 Apr-Jun;51(2):140-5.
    PMID: 16006713
    Infectious diseases account for a third of all the deaths in the developing world. Achievements in understanding the basic microbiology, pathogenesis, host defenses and expanded epidemiology of infectious diseases have resulted in better management and reduced mortality. However, an emerging infectious disease, melioidosis, is becoming endemic in the tropical regions of the world and is spreading to non-endemic areas. This article highlights the current understanding of melioidosis including advances in diagnosis, treatment and prevention. Better understanding of melioidosis is essential, as it is life-threatening and if untreated, patients can succumb to it. Our sources include a literature review, information from international consensus meetings on melioidosis and ongoing discussions within the medical and scientific community.
    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links