Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Liu A, Chai X, Zhu S, Chin PT, He M, Xu YJ, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125311.
    PMID: 37302627 DOI: 10.1016/j.ijbiomac.2023.125311
    Astaxanthin (AST) has outstanding antioxidant and anti-inflammation bioactivities, but the low biocompatibility and stability limit its application in foods. In this study, N-succinyl-chitosan (NSC)-coated AST polyethylene glycol (PEG)-liposomes were constructed to enhance the biocompatibility, stability, and intestinal-targeted migration of AST. The AST NSC/PEG-liposomes were uniform in size, had larger particles, greater encapsulation efficiency, and better storage, pH, and temperature stability than the AST PEG-liposomes. AST NSC/PEG-liposomes exerted stronger antibacterial and antioxidant activities against Escherichia coli and Staphylococcus aureus than AST PEG-liposomes. The NSC coating not only protects AST PEG-liposomes from gastric acid but also prolongs the retention and sustained release of AST NSC/PEG-liposomes depending on the intestinal pH. Moreover, caco-2 cellular uptake studies showed that AST NSC/PEG-liposomes had higher cellular uptake efficiency than AST PEG-liposomes. And AST NSC/PEG-liposomes were taken up by caco-2 cells through clathrin mediated endocytic, macrophage pathways and paracellular transport pathway. These results further proved that AST NSC/PEG-liposomes delayed the release and promoted the intestinal absorption of AST. Hence, AST PEG-liposomes coated with NSC could potentially be used as an efficient delivery system for therapeutic AST.
    Matched MeSH terms: Caco-2 Cells
  2. Hu Y, Xie Y, Su Q, Fu J, Chen J, Liu Y
    Foodborne Pathog Dis, 2023 Nov;20(11):521-530.
    PMID: 37722019 DOI: 10.1089/fpd.2023.0039
    The human gut flora is highly diverse. Most lactic acid bacteria (LAB) are widely used as probiotics in human and animal husbandry and have a variety of physiological benefits. This article mainly studied the bacteriostatic ability of LAB against four pathogenic bacteria, gastrointestinal environment tolerance, and adhesion ability to Caco-2 cells. The genome of Lactiplantibacillus plantarum L461 was sequenced and analyzed. The results showed that strains F512, L461, and D469 had the most significant inhibitory effects on Escherichia coli, Salmonella enterica B, Staphylococcus aureus, and Listeria monocytogenes. In addition, strains L461, C502, and P231 showed good tolerance after exposure to simulated gastric fluid for 0-4 h. Strains C502, H781, and L461 showed good tolerance in simulated intestinal fluid. Strains L461 and H781 showed good adhesion to Caco-2 cells. The number of viable bacteria was more than 60. Therefore, we screened L. plantarum L461 from 12 LAB strains through three aspects of evaluation, and conducted whole genome sequencing and analysis. Sequencing results showed that L. plantarum L461 had more defense mechanisms and phage annotation genes than L. plantarum WCFS1. Virulence factor studies showed that L. plantarum L461 has iron absorption system and adhesion-related gene annotation, indicating that L. plantarum L461 has survival advantage in intestinal tract. The predicted results showed that there were eight phages with phage resistance in L. plantarum L461. L. plantarum L461 is sensitive to several antibiotics, notably penicillin and oxacillin. In summary, the results of this study prove that L. plantarum L461 has good prebiotic function and is safe. Therefore, L. plantarum L461 can be safely used as a potential functional probiotic.
    Matched MeSH terms: Caco-2 Cells
  3. Mou B, Liu Y, Yang W, Song S, Shen C, Lai OM, et al.
    Food Chem, 2021 Dec 01;364:130426.
    PMID: 34175616 DOI: 10.1016/j.foodchem.2021.130426
    Present work investigated the effects of processing (homogenization, sterilization) and cold storage on physicochemical properties, in vitro digestion and Caco-2 cellular uptake of bovine milk. Extreme heat sterilization and low temperature storage have significant impact on particle size and phospholipidome of bovine milk. In addition, cold storage of bovine milks led to formation of β' polymorphs crystals and endothermic peak with Toffset higher than body temperature. Processing and cold storage also increased the initial digestibility but reduced the overall digestibility of bovine milk. This might be related to the decreased particle size of the milk fat globules, changed in the phospholipidome of the MFGM and formation of β' polymorphs crystals in frozen milk. It is interesting to note that PE has relatively faster digestion meanwhile SM has relatively slower digestion. HTST milk which demonstrated lesser changed in terms of phospholipidome demonstrated highest cellular uptakes of most fatty acids.
    Matched MeSH terms: Caco-2 Cells
  4. Xue YT, Chen MY, Cao JS, Wang L, Hu JH, Li SY, et al.
    Mil Med Res, 2023 Mar 23;10(1):15.
    PMID: 36949519 DOI: 10.1186/s40779-023-00451-1
    BACKGROUND: Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging. Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies, making tissue bridging challenging.

    METHODS: This study proposes a tissue adhesive in the form of adhesive cryogel particles (ACPs) made from chitosan, acrylic acid, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The adhesion performance was examined by the 180-degree peel test to a collection of tissues including porcine heart, intestine, liver, muscle, and stomach. Cytotoxicity of ACPs was evaluated by cell proliferation of human normal liver cells (LO2) and human intestinal epithelial cells (Caco-2). The degree of inflammation and biodegradability were examined in dorsal subcutaneous rat models. The ability of ACPs to bridge irregular tissue defects was assessed using porcine heart, liver, and kidney as the ex vivo models. Furthermore, a model of repairing liver rupture in rats and an intestinal anastomosis in rabbits were established to verify the effectiveness, biocompatibility, and applicability in clinical surgery.

    RESULTS: ACPs are applicable to confined and irregular tissue defects, such as deep herringbone grooves in the parenchyma organs and annular sections in the cavernous organs. ACPs formed tough adhesion between tissues [(670.9 ± 50.1) J/m2 for the heart, (607.6 ± 30.0) J/m2 for the intestine, (473.7 ± 37.0) J/m2 for the liver, (186.1 ± 13.3) J/m2 for muscle, and (579.3 ± 32.3) J/m2 for the stomach]. ACPs showed considerable cytocompatibility in vitro study, with a high level of cell viability for 3 d [(98.8 ± 1.2) % for LO2 and (98.3 ± 1.6) % for Caco-2]. It has comparable inflammation repair in a ruptured rat liver (P = 0.58 compared with suture closure), the same with intestinal anastomosis in rabbits (P = 0.40 compared with suture anastomosis). Additionally, ACPs-based intestinal anastomosis (less than 30 s) was remarkably faster than the conventional suturing process (more than 10 min). When ACPs degrade after surgery, the tissues heal across the adhesion interface.

    CONCLUSIONS: ACPs are promising as the adhesive for clinical operations and battlefield rescue, with the capability to bridge irregular tissue defects rapidly.

    Matched MeSH terms: Caco-2 Cells
  5. Khan AA, Akhtar S, Yadav Y, Atiya A, Alelwani W, Bannunah AM, et al.
    Curr Drug Deliv, 2023;20(10):1474-1486.
    PMID: 35980056 DOI: 10.2174/1567201819666220817111054
    BACKGROUND: The antiretroviral protease inhibitor drug, lopinavir (LPV), is used to treat HIV-1 infection. LPV is known to have limited oral bioavailability, which may be attributed to its poor aqueous solubility, low efficacy and high first-pass metabolism. Self-nanoemulsifying drug delivery systems (SNEDDS) for LPV have been developed and optimised to counter the current issues.

    METHODS: The titration method was used to prepare LPV-loaded SNEDDS (LPV-SNEDDS). Six different pseudo-ternary phase diagrams were constructed to identify the nanoemulsifying region. The developed formulations were chosen in terms of globule size < 100 nm, dispersity ≤ 0.5, dispersibility (Grade A) and% transmittance > 85. Heating-cooling cycle, freeze-thaw cycle, and centrifugation studies were performed to confirm the stability of the developed SNEDDS.

    RESULTS: The final LPV-SNEDDS (L-14) droplet size was 58.18 ± 0.62 nm, with polydispersity index, zeta potential, and entrapment efficiency (EE%) values of 0.326 ± 0.005, -22.08 ± 1.2 mV, and 98.93 ± 1.18%, respectively. According to high-resolution transmission electron microscopy (HRTEM) analysis, the droplets in the optimised formulation were < 60 nm in size. The selected SNEDDS released nearly 99% of the LPV within 30 min, which was significantly (p < 0.05) higher than the LPV-suspension in methylcellulose (0.5% w/v). It indicates the potential use of SNEDDS to enhance the solubility of LPV, which eventually could help improve the oral bioavailability of LPV. The Caco-2 cellular uptake study showed a significantly (p < 0.05) higher LPV uptake from the SNEEDS (LPV-SNEDDS-L-14) than the free LPV (LPV-suspension).

    CONCLUSION: The LPV-SNEDDS could be a potential carrier for LPV oral delivery.

    Matched MeSH terms: Caco-2 Cells
  6. Nami Y, Haghshenas B, Haghshenas M, Abdullah N, Yari Khosroushahi A
    Front Microbiol, 2015;6:1317.
    PMID: 26635778 DOI: 10.3389/fmicb.2015.01317
    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.
    Matched MeSH terms: Caco-2 Cells
  7. Tan LT, Ser HL, Yin WF, Chan KG, Lee LH, Goh BH
    Front Microbiol, 2015;6:1316.
    PMID: 26635777 DOI: 10.3389/fmicb.2015.01316
    A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3-, 2.0-, and 1.8-folds higher inhibitory effect against HCT116, HT29, and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic toward colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.
    Matched MeSH terms: Caco-2 Cells
  8. Jailani F, Williamson G
    Food Funct, 2014 Apr;5(4):653-62.
    PMID: 24525490 DOI: 10.1039/c3fo60691k
    Solubility and matrix play an important role in the gut lumen in delivering bioactive compounds to the absorptive surface of enterocytes. The purpose of this study was to determine the effect of certain commonly consumed lipids, soybean, olive and corn oil, on the transport and conjugation of flavonols (myricetin, quercetin, kaempferol and galangin) using the conjugation-competent co-cultured Caco-2/HT29-MTX intestinal cell monolayer model. To enable identification and quantification of conjugates, each flavonol was enzymatically glucuronidated or sulphated, then analysed by HPLC with triple quadrupole mass spectrometric detection. Quantification showed large differences in mass spectrometric peak area response factors between the aglycones and many of the conjugates, with galangin-sulphate for example ionising ∼15-fold better than galangin. Flavonol aglycones and conjugates were transported to the basolateral side of Caco-2/HT29-MTX co-cultures. The total amount of methyl, sulphate and glucuronide conjugates was in the order: galangin > quercetin > kaempferol > myricetin. All oils inhibited the transport and conjugation of galangin, the most hydrophobic flavonol, whereas they increased the sulphation, and to some extent glucuronidation, of quercetin and kaempferol. The results show that the lipid matrix has the potential to modify both transport and conjugation of dietary flavonols, but that the effect depends upon the structure and hydrophobicity.
    Matched MeSH terms: Caco-2 Cells
  9. Yousuf FA, Rafiq S, Siddiqui R, Khan NA
    Microb Pathog, 2016 Apr;93:145-51.
    PMID: 26867478 DOI: 10.1016/j.micpath.2016.02.002
    The completion of Escherichia coli K1 genome has identified several genomic islands that are present in meningitis-causing E. coli RS218 but absent in the non-pathogenic E. coli MG1655. In this study, the role of various genomic islands in E. coli K1 interactions with intestinal epithelial cells (Caco-2) and kidney epithelial cells (MA104) was determined. Using association assays, invasion assays, and intracellular survival assays, the findings revealed that the genomic island deletion mutants of RS218 related to P fimbriae, S fimbriae, F17-like fimbriae, non-fimbrial adhesins, Hek and hemagglutinin, protein secretion system (T1SS for hemolysin; T2SS; T5SS for antigen 43), Iro system and hmu system), invasins (CNF1, IbeA), toxins (α-hemolysin), K1 capsule biosynthesis, metabolism (d-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism), prophage genes, showed reduced interactions with both cell types. Next, we determined the role of various genomic islands in E. coli K1 resistance to serum. When exposed to the normal human serum, the viability of the genomic island deletion mutants related to adhesins such as S fimbriae, P fimbriae, F17-like fimbriae, non-fimbrial adhesins, Hek and hemagglutinin, antigen 43 and T5SS for antigen 43, T2SS, and T1SS for hemolysin, Iro system and hmu system, prophage genes, metabolism (sugar metabolism and d-serine catabolism), K1 capsule biosynthesis, and invasins such as CNF1 was affected, suggesting their role in bacteremia. The characterization of these genomic islands should reveal mechanisms of E. coli K1 pathogenicity that could be of value as therapeutic targets.
    Matched MeSH terms: Caco-2 Cells
  10. Gajjala RR, Chinta RR, Gopireddy VSR, Poola S, Balam SK, Chintha V, et al.
    Bioorg Chem, 2022 Dec;129:106205.
    PMID: 36265354 DOI: 10.1016/j.bioorg.2022.106205
    Novel ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates were synthesized from one-pot, three-component Biginelli reaction of aryl aldehydes, ethyl acetoacetate and urea/ thiourea by catalytic action of silica supported Bismuth(III) triflate, a Lewis acid. All the synthesized compounds were structurally characterized by spectral (IR, 1H NMR & 13C NMR spectroscopic and Mass spectrometric) and elemental (C, H & N) analyses. The present protocol has deserved novel as, formed the products in high yields with short reaction times, involved eco-friendly methodology and reusable heterogeneous Lewis acid catalyst. The title compounds were screened for in vitro DPPH free radical scavenging antioxidant activity and identified 4i, 4j, 4h & 4f as potential antioxidants. The obtained in vitro results were correlated with molecular docking, ADMET, QSAR, Bioactivity & toxicity risk studies and molecular finger print properties and found that in silico binding affinities were identified in good correlation with in vitro antioxidant activity and studied the structure activity relationship. The molecular docking study has disclosed strong hydrogen bonding interactions of title compounds with aspartic acid (ASP197) aminoacid residue of 2HCK, a complex enzyme of haematopoietic cell kinase and quercetin. Results of toxicology study evaluated for potential risks of compounds have revealed title compounds as safer drugs. In ultimate the study has established ligand's antioxidant potentiality as they effectively binds with ASP197 amino acid of Chain A hence confirms the inhibition of growth of reactive oxygen species in vivo. In addition, the title compounds have been identified as potential blood-brain barrier penetrable entities and efficient central nervous system (CNS) active neuro-protective antioxidant agents.
    Matched MeSH terms: Caco-2 Cells
  11. Alfaleh MA, Fahmy O, Al-Rabia MW, Abourehab MAS, Ahmed OAA, Fahmy UA, et al.
    Sci Rep, 2022 Nov 14;12(1):19446.
    PMID: 36376469 DOI: 10.1038/s41598-022-24151-3
    As a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, Fluvastatin (FLV) is used for reducing low-density lipoprotein (LDL) cholesterol as well as to prevent cardiovascular problems. FLV showed cell line cytotoxicity and antitumor effect. Melittin (MEL) exhibits antineoplastic activity and is known to be promising as a therapeutic option for cancer patients. The aim of this work was to investigate the combination of FLV with MEL loaded hybrid formula of phospholipid (PL) with alpha lipoic acid (ALA) nanoparticles to maximize anticancer tendencies. This study examines the optimization of the prepared formulation in order to minimize nanoparticles size and maximize zeta potential to potentiate cytotoxic potentialities in colon cancer cells (Caco2), cell viability, cell cycle analysis and annexin V were tested. In addition to biological markers as P53, Bax, bcl2 and Caspase 3 evaluation The combination involving FLV PL ALA MEL showed enhanced cytotoxic potentiality (IC50 = 9.242 ± 0.35 µg/mL), about twofold lower, compared to the raw FLV (IC50 = 21.74 ± 0.82 µg/mL). According to studies analyzing cell cycle, optimized FLV PL ALA MEL was found to inhibit Caco2 colon cancer cells more significantly than other therapeutic treatments, wherein a higher number of cells were found to accumulate over G2/M and pre-G1 phases, whereas G0/G1/S phases witnessed the accumulation of a lower number of cells. The optimized formulation may pave the way for a novel and more efficacious treatment for colon cancer.
    Matched MeSH terms: Caco-2 Cells
  12. Buang F, Fu M, Chatzifragkou A, Amin MCIM, Khutoryanskiy VV
    Int J Pharm, 2023 Jul 25;642:123113.
    PMID: 37301242 DOI: 10.1016/j.ijpharm.2023.123113
    Hydroxyethylcellulose (HEC) is a non-ionic water-soluble polymer with poor mucoadhesive properties. The mucoadhesive properties of hydroxyethylcellulose can be improved by modifying it through conjugation with molecules containing maleimide groups. Maleimide groups interact with the thiol groups present in cysteine domains in the mucin via Michael addition reaction under physiological conditions to form a strong mucoadhesive bond. This will prolong the residence time of a dosage form containing this modified polymer and drug on mucosal surfaces. In this study HEC was modified by reaction with 4-bromophenyl maleimide in varying molar ratios and the successful synthesis was confirmed using 1H NMR and FTIR spectroscopies. The safety of the newly synthesised polymer derivatives was assessed with in vivo planaria assays and in vitro MTT assay utilising Caco-2 cell line. The synthesized maleimide-functionalised HEC solutions were sprayed onto blank tablets to develop a model dosage form. The physical properties and mucoadhesive behavior of these tablets were evaluated using a tensile test with sheep buccal mucosa. The maleimide-functionalised HEC exhibited superior mucoadhesive properties compared to unmodified HEC.
    Matched MeSH terms: Caco-2 Cells
  13. Ser HL, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, Lee LH
    Front Microbiol, 2015;6:1398.
    PMID: 26733951 DOI: 10.3389/fmicb.2015.01398
    Streptomyces pluripotens MUSC 137 was isolated from mangrove soil obtained from Tanjung Lumpur, Pahang, Malaysia. We investigated the phylogenetic, genomic, biochemical, and phenotypic characteristics of this strain. Uniquely adapted microorganisms from mangrove habitats have previously yielded compounds of biopharmaceutical interest. In order to examine the bioactivities possessed by the strain, fermentation extract was prepared through solvent extraction method prior to bioactivities screenings. Antioxidant activity was examined via DPPH assay while the cytotoxic effect was assessed by means of examining the activity of the extract against selected human cancer cell lines, namely colon cancer cells (HCT-116, Caco-2, SW480, and HT-29), breast cancer cell (MCF-7), lung cancer cell (A549), prostate cancer cell (DU145), and cervical cancer cell (Ca Ski). The results revealed MUSC 137 possesses significant antioxidant activity and demonstrates cytotoxic effect against several cancer cell lines tested. The results indicated MCF-7 cells were most susceptible to the extract with the lowest IC50 (61.33 ± 17.10 μg/mL), followed by HCT-116 and A549. Additionally, selective index (SI) showed that MUSC 137 extract was less toxic against normal cell lines when compared to MCF-7 and HCT-116 cells. The extract was further subjected to chemical analysis using GC-MS and revealed the presence of deferoxamine and pyrrolizidines related compounds which may account for the antioxidant and cytotoxic properties observed.
    Matched MeSH terms: Caco-2 Cells
  14. Foong LC, Imam MU, Ismail M
    J Agric Food Chem, 2015 Oct 21;63(41):9029-36.
    PMID: 26435326 DOI: 10.1021/acs.jafc.5b03420
    The present study was aimed at utilizing defatted rice bran (DRB) protein as an iron-binding peptide to enhance iron uptake in humans. DRB samples were treated with Alcalase and Flavourzyme, and the total extractable peptides were determined. Furthermore, the iron-binding capacities of the DRB protein hydrolysates were determined, whereas iron bioavailability studies were conducted using an in vitro digestion and absorption model (Caco-2 cells). The results showed that the DRB protein hydrolysates produced by combined Alcalase and Flavourzyme hydrolysis had the best iron-binding capacity (83%) after 90 min of hydrolysis. The optimal hydrolysis time to produce the best iron-uptake in Caco-2 cells was found to be 180 min. The results suggested that DRB protein hydrolysates have potent iron-binding capacities and may enhance the bioavailability of iron, hence their suitability for use as iron-fortified supplements.
    Matched MeSH terms: Caco-2 Cells
  15. He PY, Yip WK, Chai BL, Chai BY, Jabar MF, Dusa N, et al.
    Oncol Rep, 2017 Dec;38(6):3554-3566.
    PMID: 29039592 DOI: 10.3892/or.2017.6037
    The objective of this study was to determine the effect of miR‑29a‑3p inhibitor on the migration and invasion of colorectal cancer cell lines (CRC) and the underlying molecular mechanisms. miR‑29a‑3p was detected using reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) in the CRC cell lines HCT11, CaCo2, HT29, SW480 and SW620. An invasive subpopulation designated SW480‑7 was derived from the parental cell line, detected by Transwell and Transwell Matrigel assays. Cytoskeleton Regulators RT2 profiler PCR array and western blot analysis were utilized to identify the alterations in expression of downstream mRNAs. siRNA against CDC42BPA was transfected into SW480‑7 and effects on cell migration and invasion were investigated. Data obtained showed that miR‑29a‑3p was detected in these five CRC cell lines. miR‑29a‑3p inhibitor had no effect on viability but stimulated cell migration and invasion of SW480‑7 cells. In contrast, miR‑29a‑3p mimic suppressed cell migration and invasion. TargetScan miRBD and DIANA were employed to identify the potential direct target genes of miR‑29a‑3p in the Cytoskeleton Regulators RT2-Profiler PCR array. Cytoskeleton Regulators RT2-Profiler PCR array data showed that 3 out of the 5 predicted targets genes, CDC42BPA (2.33-fold), BAIAP2 (1.79-fold) and TIAM1 (1.77-fold), in the array were upregulated by miR‑29a‑3p. A significant increase in expression IQGAP2, PHLDB2, SSH1 mRNAs and downregulation of PAK1 mRNA was also detected with miR‑29a‑3p inhibition. Increase in CDC42BPA, SSH1 and IQGAP2 mRNA expression correlated with increased protein level in miR‑29a‑3p transfected SW-480-7 cells. Silencing of CDC42BPA (an enhancer of cell motility) partially abolished miR‑29a‑3p inhibitor-induced stimulation of cell migration and invasion. miR‑29a‑3p expression in stage II and III CRC is relatively lower than that of stage I CRC. However, the data need to be interpreted with caution due to the small sample size. In conclusion, inhibition of miR‑29a‑3p stimulates SW480‑7 cell migration and invasion and downstream expression IQGAP2, PHLDB2, SSH1 mRNAs are upregulated whilst PAK1 mRNA is downregulated. Silencing of CDC42BPA expression partially reduces miR29a‑3p inhibitor-induced migration and invasion of SW480‑7 cells.
    Matched MeSH terms: Caco-2 Cells
  16. Law JW, Chan KG, He YW, Khan TM, Ab Mutalib NS, Goh BH, et al.
    Sci Rep, 2019 12 03;9(1):15262.
    PMID: 31792235 DOI: 10.1038/s41598-019-51622-x
    Streptomycetes have been the center of attraction within scientific community owing to their capability to produce various bioactive compounds, for instance, with different antimicrobial, anticancer, and antioxidant properties. The search for novel Streptomyces spp. from underexplored area such as mangrove environment has been gaining attention since these microorganisms could produce pharmaceutically important metabolites. The aim of this study is to discover the diversity of Streptomyces spp. from mangrove in Sarawak and their bioactive potentials - in relation to antioxidant and cytotoxic activities. A total of 88 Streptomyces isolates were successfully recovered from the mangrove soil in Kuching, state of Sarawak, Malaysia. Phylogenetic analysis of all the isolates and their closely related type strains using 16S rRNA gene sequences resulted in 7 major clades in the phylogenetic tree reconstructed based on neighbour-joining algorithm. Of the 88 isolates, 18 isolates could be considered as potentially novel species according to the 16S rRNA gene sequence and phylogenetic analyses. Preliminary bioactivity screening conducted on the potential novel Streptomyces isolates revealed significant antioxidant activity and notable cytotoxic effect against tested colon cancer cell lines (HCT-116, HT-29, Caco-2, and SW480), with greater cytotoxicity towards SW480 and HT-29 cells. This study highlighted that the Sarawak mangrove environment is a rich reservoir containing streptomycetes that could produce novel secondary metabolites with antioxidant and cytotoxic activities.
    Matched MeSH terms: Caco-2 Cells
  17. Rusli N, Amanah A, Kaur G, Adenan MI, Sulaiman SF, Wahab HA, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2019 04;392(4):481-496.
    PMID: 30604191 DOI: 10.1007/s00210-018-01605-y
    Mitragynine is a major component isolated from Mitragyna speciosa Korth or kratom, a medicinal plant known for its opiate-like and euphoric properties. Multiple toxicity and fatal cases involving mitragynine or kratom have been reported but the underlying causes remain unclear. P-glycoprotein (P-gp) is a multidrug transporter which modulates the pharmacokinetics of xenobiotics and plays a key role in mediating drug-drug interactions. This study investigated the effects of mitragynine on P-gp transport activity, mRNA, and protein expression in Caco-2 cells using molecular docking, bidirectional assay, RT-qPCR, Western blot analysis, and immunocytochemistry techniques, respectively. Molecular docking simulation revealed that mitragynine interacts with important residues at the nucleotide binding domain (NBD) site of the P-gp structure but not with the residues from the substrate binding site. This was consistent with subsequent experimental work as mitragynine exhibited low permeability across the cell monolayer but inhibited digoxin transport at 10 μM, similar to quinidine. The reduction of P-gp activity in vitro was further contributed by the downregulation of mRNA and protein expression of P-gp. In summary, mitragynine is likely a P-gp inhibitor in vitro but not a substrate. Hence, concurrent administration of mitragynine-containing kratom products with psychoactive drugs which are P-gp substrates may lead to clinically significant toxicity. Further clinical study to prove this point is needed.
    Matched MeSH terms: Caco-2 Cells
  18. Maki MAA, Kumar PV, Cheah SC, Siew Wei Y, Al-Nema M, Bayazeid O, et al.
    ACS Omega, 2019 May 31;4(5):8767-8777.
    PMID: 31459966 DOI: 10.1021/acsomega.9b00109
    Several studies have shown that the mammalian target of rapamycin (mTOR) inhibitor; everolimus (EV) improves patient survival in several types of cancer. However, the meaningful efficacy of EV as a single agent for the treatment of colorectal cancer (CRC) has failed to be proven in multiple clinical trials. Combination therapy is one of the options that could increase the efficacy and decrease the toxicity of the anticancer therapy. This study revealed that the β-cyclodextrin (β-CD):FGF7 complex has the potential to improve the antiproliferative effect of EV by preventing FGF receptor activation and by enhancing EV cellular uptake and intracellular retention. Molecular docking techniques were used to investigate the possible interaction between EV, β-CD, and FGF7. Molecular docking insights revealed that β-CD and EV are capable to form a stable inclusion complex with FGF at the molecular level. The aqueous solubility of the inclusion complex was increased (3.1 ± 0.23 μM) when compared to the aqueous solubility of pure EV (1.7 ± 0.16 μM). In addition, the in vitro cytotoxic activity of a FGF7:β-CD:EV complex on Caco-2 cell line was investigated using real-time xCELLigence technology. The FGF7:β-CD:EV complex has induced apoptosis of Caco-2 cells and shown higher cytotoxic activity than the parent drug EV. With the multitargets effect of β-CD:FGF7 and EV, the antiproliferative effect of EV was remarkably improved as the IC50 value of EV was reduced from 9.65 ± 1.42 to 1.87 ± 0.33 μM when compared to FGF7:β-CD:EV complex activity. In conclusion, the findings advance the understanding of the biological combinational effects of the β-CD:FGF7 complex and EV as an effective treatment to combat CRC.
    Matched MeSH terms: Caco-2 Cells
  19. Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M, Pottoo FH, et al.
    Int J Biol Macromol, 2019 May 01;128:825-838.
    PMID: 30690115 DOI: 10.1016/j.ijbiomac.2019.01.142
    BACKGROUND: Daunorubicin hydrochloride (DAUN·HCl), due to low oral bioavailability poses the hindrance to be marketed as an oral formulation.

    AIM OF THE STUDY: To develop a natural biodegradable macromolecule i.e. Chitosan (CS)-coated-DAUN-PLGA-poly(lactic-co-glycolic acid)-Nanoparticles (NPs) with an aim to improve oral-DAUN bioavailability and to develop as well as validate UHPLC-MS/MS (ESI/Q-TOF) method for plasma quantification and pharmacokinetic analysis (PK) of DAUN.

    RESULTS: A particle size (198.3 ± 9.21 nm), drug content (47.06 ± 1.16 mg/mg) and zeta potential (11.3 ± 0.98 mV), consisting of smooth and spherical shape was observed for developed formulation. Cytotoxicity studies for CS-DAUN-PLGA-NPs revealed; a comparative superiority over free DAUN-S (i.v.) in human breast adenocarcinoma cell lines (MCF-7) and a higher permeability i.e. 3.89 folds across rat ileum, as compared to DAUN-PLGA-NPs (p Caco-2). For PK, CS-DAUN-PLGA-NPs as compared to DAUN-S, exhibited a 10.0 fold higher bioavailability in Wister rat's plasma due to presence of a natural biodegradable macromolecule i.e. CS coated on the PLGA-NPs. With regard to bioanalytical method, easy as well as a rapid method for DAUN-plasma quantification was developed as; 2.75 min and 528.49/321.54 m/z for DAUN along with 1.94 min and 544.36/397.41 m/z for IS i.e. Doxorubicin, for elution time and transition, respectively.

    CONCLUSION: A novel natural biodegradable approach used in the preparation of CS coated DAUN-NPs for oral administration of DAUN is reported in this study which is can be utilized as an alternate for intravenous therapy.

    Matched MeSH terms: Caco-2 Cells
  20. Vadabingi N, Avula VKR, Zyryanov GV, Vallela S, Anireddy JS, Pasupuleti VR, et al.
    Bioorg Chem, 2020 04;97:103708.
    PMID: 32146177 DOI: 10.1016/j.bioorg.2020.103708
    A series of novel α-methyl-l-DOPA urea derivatives viz., 3-(3,4-dihydroxyphenyl)-2-methyl-2-(3-halo/trifluoromethyl substituted phenyl ureido)propanoic acids (6a-e) have been synthesized from the reaction of α-methyl-l-DOPA (3) with various aryl isocyanates (4a-e) by using triethylamine (5, TEA) as a base catalyst in THF at reflux conditions. The synthesized compounds are structurally characterized by spectral (IR, 1H &13C NMR and MASS) and elemental analysis studies and screened for their in-vitro antioxidant activity against DPPH, NO and H2O2 free radical scavenging assays and identified compounds 6c &6d as potential antioxidants. The acquired in vitro results were correlated with the results of molecular docking, ADMET, QSAR and bioactivity studies performed for them and predicted that the recorded in silico binding affinities are in good correlation with the in vitro antioxidant activity results. The molecular docking analysis has comprehended the strong hydrogen bonding interactions of 6a-e with 1CB4, 1N8Q, 3MNG, 1OG5, 1DNU, 3NRZ, 2CDU, 1HD2 and 2HCK proteins of their respective SOD, LO, PRXS5, CP450, MP, XO, NO, PRY5 and HCK enzymes. This has sustained the effective binding of 6a-e and resulted in functional inhibition of selective aminoacid residues to be pronounced as multiple molecular targets mediated antioxidant potent compounds. In addition, the evaluated toxicology risks of 6a-e are identified with in the potential limits of drug candidates. The conformational analysis of 6c & 6d prominently infers that urea moiety uniting α-methyl-l-DOPA with halo substituted aryl units into a distinctive orientation to comply good structure-activity to inhibit the proliferation of reactive oxygen species in vivo.
    Matched MeSH terms: Caco-2 Cells
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links