AIMS AND OBJECTIVES: Accordingly, the aim of this study was designed to evaluate the prevalence of accessory heads of biceps brachii muscle in human cadavers.
MATERIALS AND METHODS: This study was conducted on 107 formalin embalmed human cadavers (male 62 and 45 female), and dissections were performed in accordance with the institutional ethical standards and the Indian Anatomy Act.
RESULTS: Out of 107 cadavers, three-headed biceps brachii was noted in 18 cadavers (16.82%) associated with the unusual course of musculocutaneous nerve. Rare and unusual unilateral five-headed biceps brachii was noted in one male cadaver (0.93%). All accessory heads noted in this study were supplied by the separate branches of musculocutaneous nerve except the humeral head of five-headed biceps, which was supplied by the radial nerve.
CONCLUSION: Awareness of these anatomical variations, knowledge is necessary for radiologists, anesthetists, physiotherapists, and orthopedic surgeons to avoid complications during various radiodiagnostic procedures or surgeries of flexor deformities of the upper arm and forearm.
MATERIALS AND METHODS: We retrospectively assessed 107 cadavers that had undergone conventional autopsy and PMCT. We made 5 measurements from the PMCT that included cervical length (CL), thoracic length (TL), lumbosacral length (LS), total column length of the spine, excluding the sacrum and coccyx (TCL), and ellipse line measurement of the whole spine, excluding the sacrum and coccyx (EL). We compared these anthropometric PMCT measurements with AL and correlated them using linear regression analysis.
RESULTS: The results showed a significant linear relationship existed between TL and LS with AL, which was higher in comparison with the other parameters than the rest of the spine parameters. The linear regression formula derived was: 48.163 + 2.458 (TL) + 2.246 (LS).
CONCLUSIONS: The linear regression formula derived from PMCT spine length parameters particularly thoracic and lumbar spine gave a finer correlation with autopsy body length and can be used for accurate estimation of cadaveric height. To the best of our knowledge, this is the first ever linear regression formula for cadaveric height assessment using only post mortem CT spine length measurements.