Displaying all 15 publications

Abstract:
Sort:
  1. Thangalazhy-Gopakumar S, Al-Nadheri WM, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S
    Bioresour Technol, 2015 Feb;178:65-9.
    PMID: 25278112 DOI: 10.1016/j.biortech.2014.09.068
    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.
    Matched MeSH terms: Cadmium/chemistry
  2. Aziz HA, Adlan MN, Ariffin KS
    Bioresour Technol, 2008 Apr;99(6):1578-83.
    PMID: 17540556
    This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.
    Matched MeSH terms: Cadmium/chemistry*
  3. Aich K, Goswami S, Das S, Mukhopadhyay CD, Quah CK, Fun HK
    Inorg Chem, 2015 Aug 3;54(15):7309-15.
    PMID: 26192906 DOI: 10.1021/acs.inorgchem.5b00784
    On the basis of the Förster resonance energy transfer mechanism between rhodamine and quinoline-benzothiazole conjugated dyad, a new colorimetric as well as fluorescence ratiometric probe was synthesized for the selective detection of Cd(2+). The complex formation of the probe with Cd(2+) was confirmed through Cd(2+)-bound single-crystal structure. Capability of the probe as imaging agent to detect the cellular uptake of Cd(2+) was demonstrated here using living RAW cells.
    Matched MeSH terms: Cadmium/chemistry*
  4. Zulfadhly Z, Mashitah MD, Bhatia S
    Environ Pollut, 2001;112(3):463-70.
    PMID: 11291452
    The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.
    Matched MeSH terms: Cadmium/chemistry
  5. Low KS, Lee CK, Ow-Wee ST
    Bull Environ Contam Toxicol, 1995 Aug;55(2):270-5.
    PMID: 7579934
    Matched MeSH terms: Cadmium/chemistry
  6. Abbas SZ, Rafatullah M, Ismail N, Lalung J
    J Basic Microbiol, 2014 Dec;54(12):1279-87.
    PMID: 24852724 DOI: 10.1002/jobm.201400157
    This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater.
    Matched MeSH terms: Cadmium/chemistry
  7. Lim PE, Ong SA, Seng CE
    Water Res, 2002 Feb;36(3):667-75.
    PMID: 11827329
    The application of simultaneous adsorption and biodegradation processes in the same reactor is known to be effective in the removal of both biodegradable and non-biodegradable contaminants in various kinds of wastewater. The objective of this study is to evaluate the efficacy of the two processes under sequencing batch reactor (SBR) operation in treating copper and cadmium-containing synthetic wastewater with powdered activated carbon (PAC) as the adsorbent. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in the ratio of 0.5: 3.5: 1.0: 0.75 :0.25 for a cycle time of 6 h. In the presence of 10 mg/L Cu(II) and 30 mg/L Cd(II), respectively, the average COD removal efficiencies were above 85% with the PAC dosage in the influent solution at 143 mg/L compared to around 60% without PAC addition. Copper(II) was found to exert a more pronounced inhibitory effect on the bioactivity of the microorganisms compared to Cd(II). It was observed that the combined presence of Cu(II) and Cd(II) did not exert synergistic effects on the microorganisms. Kinetic study conducted for the REACT period showed that the addition of PAC had minimized the inhibitory effect of the heavy metals on the bioactivity of microorganisms.
    Matched MeSH terms: Cadmium/chemistry*
  8. Sutirman ZA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA, Jume BH
    Int J Biol Macromol, 2018 Sep;116:255-263.
    PMID: 29746971 DOI: 10.1016/j.ijbiomac.2018.05.031
    In this study, the Cu(II) and Cd(II) ions removal behavior of crosslinked chitosan beads grafted poly(methacrylamide) (abbreviated as crosslinked chitosan-g-PMAm) from single metal ion solutions was investigated. The modified chitosan beads presented a remarkable improvement in acid resistance. The batch experiments demonstrated that pH of solution played a significant role in adsorption. It was found that the adsorption of Cu(II) and Cd(II) were optimum at pH 4 and pH 5, respectively. The maximum adsorption capacities for Cu(II) and Cd(II) based on Langmuir equation were 140.9 mg g-1 and 178.6 mg g-1, respectively. Pseudo-second order gave a better fit for adsorption data with respect to linearity coefficients than pseudo-first order suggesting that chemisorption or electron transfer is the dominant mechanism of the metal ions onto crosslinked chitosan-g-PMAm. In addition, X-ray photoelectron spectroscopy (XPS) investigations revealed that adsorption of both metal ions took place on the surfaces of crosslinked chitosan-g-PMAm by chelation through CNH2, CO and CO groups. Overall, the modified chitosan has proved a promising adsorbent for removal of metal ions.
    Matched MeSH terms: Cadmium/chemistry*
  9. Tariq FS, Samsuri AW, Karam DS, Aris AZ, Jamilu G
    Environ Monit Assess, 2019 Mar 21;191(4):232.
    PMID: 30900076 DOI: 10.1007/s10661-019-7359-6
    This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
    Matched MeSH terms: Cadmium/chemistry
  10. Kadhum SA, Ishak MY, Zulkifli SZ
    Environ Geochem Health, 2017 Oct;39(5):1145-1158.
    PMID: 27848092 DOI: 10.1007/s10653-016-9883-4
    This study applied the use of sequential extraction technique and simple bioaccessibility extraction test to quantify the bioavailable fractions and the human bioaccessible concentration of metals collected from nine stations in surface sediment of the Langat River. The concentrations of total and bioaccessible metals from different stations were in the range of 0.49-1.04, 0.10-0.32 μg g-1 for T-Cd, Bio-Cd, respectively, and 12.9-128.03, 2.06-8.53 μg kg-1 for T-Hg, Bio-Hg, respectively. The results revealed highest R-Bio-Cd in Banting station (55.3 %), while the highest R-Bio-Hg was in Kajang station (49.61 %). The chemical speciation of Cd in most sampling stations was in the order of oxidisable-organic > residual > exchangeable > acid-reducible, while speciation of Hg was in the order of exchangeable > residual > oxidisable-organic > acid-reducible. The correlation matric of mean content showed that the TOM, particle size and Mg++ in polluted surface sediments was highly correlated with total mercury. The PCA showed that the main factors influencing the bioaccessibility of Hg in surface sediments were the sediment TOM, F1 (EFLE) and F3 (oxidation-organic), while the factor influencing the bioaccessibility of Cd was the F3 (oxidation-organic) and T-Cd.
    Matched MeSH terms: Cadmium/chemistry
  11. Alexander JA, Surajudeen A, Aliyu EU, Omeiza AU, Zaini MAA
    Water Sci Technol, 2017 Oct;76(7-8):2232-2241.
    PMID: 29068353 DOI: 10.2166/wst.2017.391
    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.
    Matched MeSH terms: Cadmium/chemistry*
  12. Yong SK, Skinner WM, Bolan NS, Lombi E, Kunhikrishnan A, Ok YS
    Environ Sci Pollut Res Int, 2016 Jan;23(2):1050-9.
    PMID: 26538256 DOI: 10.1007/s11356-015-5654-5
    Pristine chitosan beads were modified with sulfur (S)-containing functional groups to produce thiolated chitosan beads (ETB), thereby increasing S donor ligands and crosslinks. The effect of temperature, heating time, carbon disulfide (CS2)/chitosan ratio, and pH on total S content of ETB was examined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The total S content of ETB increased with increasing CS2/chitosan ratio and decreased with decreasing pH and increasing temperature (>60 °C) and heating time (at 60 °C). Spectroscopic analyses revealed the presence of thiol (-SH)/thione, disulfide (-S-S-), and sulfonate groups in ETB. The thiolation mechanism involves decomposition of dithiocarbamate groups, thereby forming thiourea crosslinks and trithiocarbonate, resulting in -SH oxidation to produce -S-S- crosslinks. The partially formed ETB crosslinks contribute to its acid stability and are thermodynamically feasible in adsorbing Cd and Cu. The S-containing functional groups added to chitinous wastes act as sorbents for metal remediation from acidic environments.
    Matched MeSH terms: Cadmium/chemistry*
  13. Ismail FA, Aris AZ, Latif PA
    Environ Sci Pollut Res Int, 2014 Jan;21(1):344-54.
    PMID: 23771443 DOI: 10.1007/s11356-013-1906-4
    This work presents the structural and adsorption properties of the CaCO3(-)-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20% was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R(2) > 0.98) than Freundlich (R(2) 
    Matched MeSH terms: Cadmium/chemistry*
  14. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Cadmium/chemistry*
  15. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E, Low KH
    Environ Monit Assess, 2011 May;176(1-4):313-20.
    PMID: 20632089 DOI: 10.1007/s10661-010-1584-3
    A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.
    Matched MeSH terms: Cadmium/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links