Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Mehrali M, Moghaddam E, Seyed Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    PLoS One, 2014;9(9):e106802.
    PMID: 25229540 DOI: 10.1371/journal.pone.0106802
    Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.
    Matched MeSH terms: Calcium Compounds/chemistry*
  2. Gan DKW, Loy ACM, Chin BLF, Yusup S, Unrean P, Rianawati E, et al.
    Bioresour Technol, 2018 Oct;265:180-190.
    PMID: 29894912 DOI: 10.1016/j.biortech.2018.06.003
    Thermodynamic and kinetic parameters of catalytic pyrolysis of rice hull (RH) pyrolysis using two different types of renewable catalysts namely natural limestone (LS) and eggshells (ES) using thermogravimetric analysis (TG) approach at different heating rates of 10-100 K min-1 in temperature range of 323-1173 K are investigated. Catalytic pyrolysis mechanism of both catalysts had shown significant effect on the degradation of RH. Model free kinetic of iso-conversional method (Flynn-Wall-Ozawa) and multi-step reaction model (Distributed Activation Energy Model) were employed into present study. The average activation energy was found in the range of 175.4-177.7 kJ mol-1 (RH), 123.3-132.5 kJ mol-1 (RH-LS), and 96.1-100.4 kJ mol-1 (RH-ES) respectively. The syngas composition had increased from 60.05 wt% to 63.1 wt% (RH-LS) and 63.4 wt% (RH-ES). However, the CO2 content had decreased from 24.1 wt% (RH) to 20.8 wt% (RH-LS) and 19.9 wt% (RH-ES).
    Matched MeSH terms: Calcium Compounds/chemistry*
  3. Ataollahi Oshkour A, Pramanik S, Shirazi SF, Mehrali M, Yau YH, Abu Osman NA
    ScientificWorldJournal, 2014;2014:616804.
    PMID: 25538954 DOI: 10.1155/2014/616804
    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.
    Matched MeSH terms: Calcium Compounds/chemistry*
  4. Zaid MH, Matori KA, Aziz SH, Zakaria A, Ghazali MS
    Int J Mol Sci, 2012;13(6):7550-8.
    PMID: 22837711 DOI: 10.3390/ijms13067550
    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased.
    Matched MeSH terms: Calcium Compounds/chemistry*
  5. Ahmad A, Ghufran R, Abd Wahid Z
    J Hazard Mater, 2011 Dec 30;198:40-8.
    PMID: 22047724 DOI: 10.1016/j.jhazmat.2011.10.008
    The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.
    Matched MeSH terms: Calcium Compounds/chemistry*
  6. Wan Z, Hameed BH
    Bioresour Technol, 2011 Feb;102(3):2659-64.
    PMID: 21109428 DOI: 10.1016/j.biortech.2010.10.119
    In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190°C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.
    Matched MeSH terms: Calcium Compounds/chemistry*
  7. Boey PL, Maniam GP, Hamid SA
    J Oleo Sci, 2009;58(10):499-502.
    PMID: 19745576
    Aquaculture activity has increased the population of crab, hence increasing the generation of related wastes, particularly the shell. In addition, the number of molting process in crabs compounds further the amount of waste shell generated. As such, in the present work, the application of the waste crab shell as a source of CaO in transesterification of palm olein to biodiesel (methyl ester) was investigated. Preliminary XRD results revealed that thermally activated crab shell contains mainly CaO. Parametric study has been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 4 wt. %; and reaction temperature, 338 K. As compared to laboratory CaO, the catalyst from waste crab shell performs well, thus creating another low-cost catalyst source for producing biodiesel as well as adding value to the waste crab shell. Reusability of crab shell CaO has also been studied and the outcome confirmed that the catalyst is capable to be reutilized up to 11 times, without any major deterioration.
    Matched MeSH terms: Calcium Compounds/chemistry
  8. Hutagalung SD, Ying OL, Ahmad ZA
    PMID: 18276560 DOI: 10.1109/TUFFC.2007.582
    This paper presents the effects of calcination time and sintering temperature on the properties of CaCu(3)Ti(4)O(12). Electroceramic material of CaCu(3)Ti(4)O(12) was prepared using a modified mechanical alloying technique that covers several processes, which are preparation of raw material, mixing and ball milling for 5 hours, calcination, pellet forming and, sintering. The objective of this modified technique is to enable the calcination and sintering processes to be carried out at a shorter time and lower temperature. The x-ray diffraction (XRD) analysis result shows that a single-phase of CaCu(3)Ti(4)O(12) was completely formed by calcination at 750 degrees C for 12 hours. Meanwhile, the grain size of a sample sintered at 1050 degrees C for 24 hours is extremely large, in the range of 20-50 mum obtained from field emission scanning electron microscopy (FESEM) images. The dielectric constant value of 14,635 was obtained at 10 kHz by impedance (LCR) meter in the sintered sample at 1050 degrees C. However, the dielectric constant value of samples sintered at 900 and 950 degrees C is quite low, in the range of 52-119.
    Matched MeSH terms: Calcium Compounds/chemistry*
  9. Erfani M, Saion E, Soltani N, Hashim M, Abdullah WS, Navasery M
    Int J Mol Sci, 2012;13(11):14434-45.
    PMID: 23203073 DOI: 10.3390/ijms131114434
    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB(2)O(4)) nanoparticles and tetraborate (CaB(4)O(7)) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.
    Matched MeSH terms: Calcium Compounds/chemistry*
  10. Maleki-Ghaleh H, Hafezi M, Hadipour M, Nadernezhad A, Aghaie E, Behnamian Y, et al.
    PLoS One, 2015;10(9):e0138454.
    PMID: 26383641 DOI: 10.1371/journal.pone.0138454
    In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.
    Matched MeSH terms: Calcium Compounds/chemistry*
  11. Shirazi FS, Mehrali M, Oshkour AA, Metselaar HS, Kadri NA, Abu Osman NA
    J Mech Behav Biomed Mater, 2014 Feb;30:168-75.
    PMID: 24316872 DOI: 10.1016/j.jmbbm.2013.10.024
    The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0-50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500-700nm after sintering process.
    Matched MeSH terms: Calcium Compounds/chemistry*
  12. Dahlan I, Ahmad Z, Fadly M, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2010 Jun 15;178(1-3):249-57.
    PMID: 20137857 DOI: 10.1016/j.jhazmat.2010.01.070
    In this work, the application of response surface and neural network models in predicting and optimizing the preparation variables of RHA/CaO/CeO(2) sorbent towards SO(2)/NO sorption capacity was investigated. The sorbents were prepared according to central composite design (CCD) with four independent variables (i.e. hydration period, RHA/CaO ratio, CeO(2) loading and the use of RHA(raw) or pretreated RHA(600 degrees C) as the starting material). Among all the variables studied, the amount of CeO(2) loading had the largest effect. The response surface models developed from CCD was effective in providing a highly accurate prediction for SO(2) and NO sorption capacities within the range of the sorbent preparation variables studied. The prediction of CCD experiment was verified by neural network models which gave almost similar results to those determined by response surface models. The response surface models together with neural network models were then successfully used to locate and validate the optimum hydration process variables for maximizing the SO(2)/NO sorption capacities. Through this optimization process, it was found that maximum SO(2) and NO sorption capacities of 44.34 and 3.51 mg/g, respectively could be obtained by using RHA/CaO/CeO(2) sorbents prepared from RHA(raw) with hydration period of 12h, RHA/CaO ratio of 2.33 and CeO(2) loading of 8.95%.
    Matched MeSH terms: Calcium Compounds/chemistry*
  13. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    Environ Sci Technol, 2006 Oct 01;40(19):6032-7.
    PMID: 17051796
    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x1 (6-16 h), amount of RHA, x2 (5-15 g), amount of CaO, x3 (2-6 g), amount of water, x4 (90-110 mL), and hydration temperature, x5 (150-250 degrees C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO2 desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent.
    Matched MeSH terms: Calcium Compounds/chemistry*
  14. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
    Matched MeSH terms: Calcium Compounds/chemistry*
  15. Ataollahi Oshkour A, Pramanik S, Mehrali M, Yau YH, Tarlochan F, Abu Osman NA
    J Mech Behav Biomed Mater, 2015 Sep;49:321-31.
    PMID: 26072197 DOI: 10.1016/j.jmbbm.2015.05.020
    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.
    Matched MeSH terms: Calcium Compounds/chemistry*
  16. Pan KL, Pan GT, Chong S, Chang MB
    J Environ Sci (China), 2018 Jul;69:205-216.
    PMID: 29941256 DOI: 10.1016/j.jes.2017.10.012
    Double perovskite-type catalysts including La2CoMnO6 and La2CuMnO6 are first evaluated for the effectiveness in removing volatile organic compounds (VOCs), and single perovskites (LaCoO3, LaMnO3, and LaCuO3) are also tested for comparison. All perovskites are tested with the gas hourly space velocity (GHSV) of 30,000hr-1, and the temperature range of 100-600°C for C7H8 removal. Experimental results indicate that double perovskites have better activity if compared with single perovskites. Especially, toluene (C7H8) can be completely oxidized to CO2 at 300°C as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskites own unique surface properties and are of higher amounts of lattice oxygen, leading to higher activity. Additionally, apparent activation energy of 68kJ/mol is calculated using Mars-van Krevelen model for C7H8 oxidation with La2CoMnO6 as catalyst. For durability test, both La2CoMnO6 and La2CuMnO6 maintain high C7H8 removal efficiencies of 100% and 98%, respectively, at 300°C and 30,000hr-1, and they also show good resistance to CO2 (5%) and H2O(g) (5%) of the gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalysts operated at 300-350°C, indicating that double perovskites are promising catalysts for VOCs removal.
    Matched MeSH terms: Calcium Compounds/chemistry*
  17. Yap WY, Che Ab Aziz ZA, Azami NH, Al-Haddad AY, Khan AA
    Med Princ Pract, 2017;26(5):464-469.
    PMID: 28934753 DOI: 10.1159/000481623
    OBJECTIVE: To evaluate the push-out bond strength and failure modes of different sealers/obturation systems to intraradicular dentin at 2 weeks and 3 months after obturation compared to AH Plus®/gutta-percha.

    MATERIALS AND METHODS: A total of 180 root slices from 60 single-canal anterior teeth were prepared and assigned to 5 experimental groups (n = 36 in each group), designated as G1 (AH Plus®/gutta-percha), G2 (TotalFill BC™ sealer/BC-coated gutta-percha), G3 (TotalFill BC™ sealer/gutta-percha), G4 (EndoREZ® sealer/EndoREZ®-coated gutta-percha), and G5 (EndoREZ® sealer/gutta-percha). Push-out bond strengths of 18 root slices in each group were assessed at 2 weeks and the other 18 at 3 months after obturation using a universal testing machine. Data were analyzed using repeated measures ANOVA. An independent t test was used to compare the mean push-out bond strength for each group at 2 weeks and 3 months after obturation.

    RESULTS: The mean push-out bond strengths of G4 and G5 were significantly lower than those of G1, G2, and G3 (p < 0.05) at both 2 weeks (G1: 1.46 ± 0.29 MPa, G2: 1.74 ± 0.43 MPa, G3: 1.74 ± 0.43 MPa, G4: 0.66 ± 0.31 MPa, G5: 0.74 ± 0.47 MPa) and 3 months after obturation (G1: 1.70 ± 1.05 MPa, G2: 3.69 ± 1.20 MPa, G3: 2.84 ± 0.83 MPa, G4: 0.14 ± 0.05 MPa, G5: 0.24 ± 0.10 MPa). The mean push-out bond strengths of G2 (3.69 ± 1.20 MPa) and G3 (2.84 ± 0.83 MPa) were higher at 3 months compared to 2 weeks after obturation (G2: 1.74 ± 0.43 MPa, G3: 1.33 ± 0.29 MPa).

    CONCLUSION: The TotalFill BC™ obturation system (G2) and the TotalFill BC™ sealer/gutta-percha (G3) showed comparable bond strength to AH Plus®. Their bond strength increased over time, whereas the EndoREZ® obturation system (G4) and EndoREZ sealer (G5) had low push-out bond strength which decreased over time.

    Matched MeSH terms: Calcium Compounds/chemistry
  18. Kausar S, Altaf AA, Hamayun M, Rasool N, Hadait M, Akhtar A, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752133 DOI: 10.3390/molecules25153520
    Lignin depolymerization for the purpose of synthesizing aromatic molecules is a growing focus of research to find alternative energy sources. In current studies, the photocatalytic depolymerization of lignin has been investigated by two new iso-propylamine-based lead chloride perovskite nanomaterials (SK9 and SK10), synthesized by the facile hydrothermal method. Characterization was done by Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV-Visible (UV-Vis), Photoluminescence (PL), and Fourier-Transform Infrared (FTIR) Spectroscopy and was used for the photocatalytic depolymerization of lignin under UV light. Lignin depolymerization was monitored by taking absorption spectra and catalytic paths studied by applying kinetic models. The %depolymerization was calculated for factors such as catalyst dose variation, initial concentration of lignin, and varying temperatures. Pseudo-second order was the best suited kinetic model, exhibiting a mechanism for lignin depolymerization that was chemically rate controlled. The activation energy (Ea) for the depolymerization reaction was found to be 15 kJ/mol, which is remarkably less than conventional depolymerization of the lignin, i.e., 59.75 kJ/mol, exhibiting significant catalytic efficiencies of synthesized perovskites. Products of lignin depolymerization obtained after photocatalytic activity at room temperature (20 °C) and at 90 °C were characterized by GC-MS analysis, indicating an increase in catalytic lignin depolymerization structural subunits into small monomeric functionalities at higher temperatures. Specifically, 2-methoxy-4-methylphenol (39%), benzene (17%), phenol (10%) and catechol (7%) were detected by GC-MS analysis of lignin depolymerization products.
    Matched MeSH terms: Calcium Compounds/chemistry*
  19. He J, Sunarso J, Miao J, Sun H, Dai J, Zhang C, et al.
    J Hazard Mater, 2019 05 05;369:699-706.
    PMID: 30831522 DOI: 10.1016/j.jhazmat.2019.02.070
    Effective regulation of p-phenylenediamine (PPD), a widely used precursor of hair dye that is harmful to human health in large concentration, relies upon an accurate yet simple detection of PPD. In this context, amperometric electrode sensor based on perovskite oxide becomes attractive given its portability, low cost, high sensitivity, and rapid processing time. This work reports the systematic characterization of a series of Sr-doped PrCoO3-δ perovskite oxides with composition of Pr1-xSrxCoO3-δ(x = 0, 0.2, 0.4, 0.6, 0.8, and 1) for PPD detection in an alkaline solution. PSC82 deposited onto glassy carbon electrode (PSC82/GCE) generates the highest redox currents which correlates with the highest hydrogen peroxide intermediates (HO2-) yield and the σ*-orbital (eg) filling of Co that is closest to unity for PSC82. PSC82/GCE provides the highest sensitivities of 655 and 308 μA mM-1 cm-2 in PPD concentration range of 0.5-2,900 and 2,900-10,400 μM, respectively, with a limit of detection of 0.17 μM. PSC82/GCE additionally demonstrates high selectivity to PPD and long term stability during 50 consecutive cyclic voltammetry scans and over 1-month storage period. The potential applicability of PSC82/GCE was also demonstrated by confirming the presence of very low concentration of PPD of below 0.5% in real hair dyes.
    Matched MeSH terms: Calcium Compounds/chemistry*
  20. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
    Matched MeSH terms: Calcium Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links