Displaying publications 1 - 20 of 120 in total

  1. Agung, E.H., Sapuan, S.M., Hamdan, M.M., Zaman, H.M.D.K., Mustofa, U.
    The properties of fibre-reinforced composites are dependent not only on the strength of the reinforcementfibre but also on the distribution of fibre strength and the composition of the chemicals or additivesaddition within the composites. In this study, the tensile properties of abaca fibre reinforced high impactpolystyrene (HIPS) composites, which had been produced with the parameters of fibre loading (30,40,50wt.%), coupling agent maleic anhydride (MAH) (1,2,3 wt%) and impact modifier (4,5,6 wt.%) weremeasured. The optimum amount of MAH is 3% and the impact modifier is 6% and these give the besttensile properties. Meanwhile, Differential Scanning Calorimetry (DSC) was used to study the thermalbehaviour within the optimum conditions of the composites. In this research, glass transitions temperature(Tg) of neat HIPS occurred below the Tg of the optimum condition of composites as the temperature ofan amorphous state. The endothermic peak of the composites was in the range of 430-4350C, includingneat HIPS. It was observed that enthalpy of the abaca fibre reinforced HIPS composites yielded belowthe neat HIPS of 748.79 J/g.
    Matched MeSH terms: Calorimetry, Differential Scanning
  2. Dahimi O, Rahim AA, Abdulkarim SM, Hassan MS, Hashari SB, Mashitoh AS, et al.
    Food Chem, 2014 Sep 1;158:132-8.
    PMID: 24731324 DOI: 10.1016/j.foodchem.2014.02.087
    The adulteration of edible fats is a kind of fraud that impairs the physical and chemical features of the original lipid materials. It has been detected in various food, pharmaceutical and cosmeceutical products. Differential scanning calorimetry (DSC) is the robust thermo-analytical machine that permits to fingerprint the primary crystallisation of triacylglycerols (TAGs) molecules and their transition behaviours. The aims of this study was to assess the cross-contamination caused by lard concentration of 0.5-5% in the mixture systems containing beef tallow (BT) and chicken fat (CF) separately. TAGs species of pure and adulterated lipids in relation to their crystallisation and melting parameters were studied using principal components analysis (PCA). The results showed that by using the heating profiles the discrimination of LD from BT and CF was very clear even at low dose of less than 1%. Same observation was depicted from the crystallisation profiles of BT adulterated by LD doses ranging from 0.1% to 1% and from 2% to 5%, respectively. Furthermore, CF adulterated with LD did not exhibit clear changes on its crystallisation profiles. Consequently, DSC coupled with PCA is one of the techniques that might use to monitor and differentiate the minimum adulteration levels caused by LD in different animal fats.
    Matched MeSH terms: Calorimetry, Differential Scanning/methods*
  3. Zaliha O, Elina H, Sivaruby K, Norizzah AR, Marangoni AG
    J Oleo Sci, 2018 Jun 01;67(6):737-744.
    PMID: 29760328 DOI: 10.5650/jos.ess17168
    The in situ polymorphic forms and thermal transitions of refined, bleached and deodorized palm oil (RBDPO), palm stearin (RBDPS) and palm kernel oil (RBDPKO) were investigated using coupled X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results indicated that the DSC onset crystallisation temperature of RBDPO was at 22.6°C, with a single reflection at 4.2Å started to appear from 23.4 to 17.1°C, and were followed by two prominent exothermic peaks at 20.1°C and 8.5°C respectively. Further cooling to -40°C leads to the further formation of a β'polymorph. Upon heating, a of β'→βtransformation was observed between 32.1 to 40.8°C, before the sample was completely melted at 43.0°C. The crystallization onset temperature of RBDPS was 44.1°C, with the appearance of the α polymorph at the same temperature as the appearance of the first sharp DSC exothermic peak. This quickly changed from α→β´ in the range 25 to 21.7°C, along with the formation of a small β peak at -40°C. Upon heating, a small XRD peak for the β polymorph was observed between 32.2 to 36.0°C, becoming a mixture of (β´+ β) between 44.0 to 52.5°C. Only the β polymorph survived further heating to 59.8°C. For RBDPKO, the crystallization onset temperature was 11.6°C, with the formation of a single sharp exothermic peak at 6.5°C corresponding to the β' polymorphic form until the temperature reached -40°C. No transformation of the polymorphic form was observed during the melting process of RBDPKO, before being completely melted at 33.2°C. This work has demonstrated the detailed dynamics of polymorphic transformations of PKO and PS, two commercially important hardstocks used widely by industry and will contribute to a greater understanding of their crystallization and melting dynamics.
    Matched MeSH terms: Calorimetry, Differential Scanning*
  4. Gorajana A, Rajendran A, Yew LM, Dua K
    Int J Pharm Investig, 2015 Jul-Sep;5(3):171-8.
    PMID: 26258059 DOI: 10.4103/2230-973X.160857
    The objective of the current study is to increase the dissolution rate of cefuroxime axetil (CA) by formation of binary CA solid dispersion using water soluble carriers such as polyvinylpyrrolidone (PVP K30) and polyethylene glycol (PEG 4000).
    Matched MeSH terms: Calorimetry, Differential Scanning
  5. Tan CP, Man YC
    Phytochem Anal, 2002 May-Jun;13(3):129-41.
    PMID: 12099103
    The melting curves of 11 vegetable oils have been characterised. Vegetable oil samples that were cooled at a constant rate (5 degrees C/min) from the melt showed between one and seven melting endotherms upon heating at four different heating rates (1, 5, 10 and 20 degrees C/min) in a differential scanning calorimeter (DSC). Triacylglycerol (TAG) profiles and iodine value analyses were used to complement the DSC data. Generally, the melting transition temperature shifted to higher values with increased rates of heating. The breadth of the melting endotherm and the area under the melting peak also increased with increasing heating rate. Although the number of endothermic peaks was dependent on heating rate, the melting curves of the oil samples were not straightforward in that there was no correlation between the number of endothermic peaks and heating rates. Multiple melting behaviour in DSC experiments with different heating rates could be explained by: (1) the melting of TAG populations with different melting points; and (2) TAG crystal reorganisation effects. On the basis of the corollary results obtained, vegetable oils and fats may be distinguished from their offset-temperature (Toff) values in the DSC melting curves. The results showed that Toff values of all oil samples were significantly (p < 0.01) different in the melting curves scanned at four different scanning rates. These calorimetric results indicate that DSC is a valuable technique for studying vegetable oils.
    Matched MeSH terms: Calorimetry, Differential Scanning
  6. Sim, S.Y., Noor Aziah, A.A., Teng, T.T., Cheng, L.H.
    The effects of food gums addition on wheat dough freeze-thaw and frozen storage stability were studied. Thermal and dynamic mechanical properties of frozen wheat dough without yeast addition were
    determined by means of Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA).
    DSC results revealed that food gums showed the ability to increase freeze-thaw stability in frozen-stored
    samples wherein lower difference in melting enthalpy between first and second freeze-thaw cycle was shown. Based on DMA results, in general, difference between Tg’ and storage temperature (- 18°C) of dough became smaller upon addition of food gums. This may have a practical implication whereby the unfrozen phase could be better protected against physical degradation.
    Matched MeSH terms: Calorimetry, Differential Scanning
  7. Siti Rohana Ahmad, Salmah Husseinsyah, Kamarudin Hussin
    A chemical modifier (acrylic acid) was used to improve the thermal properties of polypropylene/ ethylene propylene diene terpolymer/calcium carbonate (PP/EPDM/CaCO3) composites. Treated
    and untreated PP/EPDM composites were filled by CaCO3 at 0, 20 and 40% wt. The composites
    were prepared using Z-blade mixer machine at 180oC and 50 rpm of rotor speed. Thermogravimetric
    analysis (TGA) and differential scanning calorimetry (DSC) methods were used to analyze the thermal properties of the composites. Thermogravimetric analysis indicated that the total weight loss of PP/EPDM/CaCO3 composites decreased with the increasing filler loading for the treated and untreated composites. Meanwhile, the presence of acrylic acid was found to have increased the thermal stability and crystallinity of PP/EPDM/CaCO3
    Matched MeSH terms: Calorimetry, Differential Scanning
  8. Nur Fadzilah Basri, Fauziah Abdul Aziz, Mohd Omar, A.K., Nik Norulaini, A.R.
    The main purpose of this study was to analyzed and examined the cocoa butter samples from Sabah. This work presence the crystal phases present in cocoa butter sample thus proved the existence of polymorphs obtained from differential scanning calorimeter (DSC) analysis and confirmed by X-ray diffraction (XRD). The cocoa butter samples were extracted using a conventional method by Soxhlet Extraction method. Crystals were formed under controlled static and tempered conditions. Cocoa butter polymorphism demonstrates that it is the actual crystallization temperature, not the cooling rate that determines the polymorph that crystallizes.
    Matched MeSH terms: Calorimetry, Differential Scanning
  9. Siti Rohana Ahmad, Salmah Husseinsyah, Kamarudin Hussin
    In this study, dynamic vulcanization process was used to improve the thermal properties of calcium carbonate filled composites. The composites were prepared using a Z-blade mixer at 180oC and rotor speed 50rpm. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) techniques were used to analyze the thermal properties of the composites. The vulcanized and unvulcanized PP/EPDM composites were filled by CaCO3 at 0, 10, 20, 30, and 40 %wt. Meanwhile, thermogravimetric analysis indicates that the total weight loss of PP/EPDM/CaCO3 composites decreased with increasing filler loading. Dynamic vulcanized composites have higher thermal stability, while the crystallinity of PP/EPDM/CaCO3 composites were increased as compared to unvulcanized composites. Therefore, the thermal properties were improved by the presence of
    dynamic vulcanization process.
    Matched MeSH terms: Calorimetry, Differential Scanning
  10. Nurul, A.I., Azura, A.
    Knowledge about the thermal and storage behavior of produced protein is important for the purpose of storage, transport and shelve life during industrial application. Recombinant bromelain thermal and storage stability were measured and compared to the commercial bromelain using Differential Scanning Calorimetry (DSC). Recombinant bromelain is more stable than commercial bromelain at higher temperature but the stability was reduced after 7 days of storage at 4oC. Higher energy is needed to break the bond between amino acid chains in recombinant bromelain as shown by the enthalpy obtained, suggesting that recombinant bromelain has good protein structure and conformation compared to commercial.
    Matched MeSH terms: Calorimetry, Differential Scanning
  11. Rosdi, N.H., Mohd Kanafi, N., Abdul Rahman, N.
    Cellulose acetate (CA) is an interesting material due to its wide spectrum of utilities across different domains ranging from absorbent to membrane filters. In this study, polystyrene (PS) nanofibres, and cellulose acetate/polystyrene (CA/PS) blend nanofibres with various ratios of CA: PS from 20: 80 to 80: 20 were fabricated by using electrospinning technique. The SEM images show that the nanofibres exhibited non-uniform and random orientation with the average fibre diameter in the range of 100 to 800 nm. It was found that the incorporation of PS had a great effect on the morphology of nanofibre. At high proportion of PS, no or less beaded CA/PS nanofibres were formed. Thermal properties of the composite nanofibres were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. The TGA results showed thermal stability of CA/PS nanofibres were higher than pristine CA.
    Matched MeSH terms: Calorimetry, Differential Scanning
  12. Woo HJ, Arof AK
    PMID: 26945998 DOI: 10.1016/j.saa.2016.02.034
    A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94×10(-7)Scm(-1) to 3.82×10(-5)Scm(-1). Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN(-) stretching mode (2030-2090cm(-1)). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4(+) complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.
    Matched MeSH terms: Calorimetry, Differential Scanning
  13. Che Man YB, Tan CP
    Phytochem Anal, 2002 May-Jun;13(3):142-51.
    PMID: 12099104
    The effects of scanning rates (1, 5, 10 and 20 degrees C/min) on the DSC cooling profiles of 11 vegetable oils have been determined in order to monitor peak transition temperatures, onset temperatures and crystallisation enthalpies. Triacylglycerol (TAG) profiles and iodine value analyses were used to complement the DSC data. The melted samples exhibited complicated crystallising exotherms. As the cooling rate increased, the crystallisation temperature decreased and the breadth of the crystallisation exotherm on cooling from the melt increased. In addition, the intensity of the exothermic peak increased somewhat when the cooling rate was increased. At slow cooling rates, TAG had more time to interact. It is conceivable that, at a low cooling rate (1 degree C/min), a prominent exotherm would be observed on crystallisation of vegetable oils and fats. The occurrence of one exotherm upon cooling indicated the co-crystallisation of the TAG upon slow cooling. On the basis of the corollary results obtained, vegetable oils may be differentiated by their onset temperature (Ton) values in the DSC cooling curves. Generally, there was a shift of Ton toward lower values with increasing cooling rates.
    Matched MeSH terms: Calorimetry, Differential Scanning
  14. Tan, T.C., Kanyarat, K., Azhar, M.E.
    Pasteurized shell eggs are eggs that have been thermally treated to eliminate harmful bacteria, however the treatment may also denature some of the egg white proteins. In this study the degree of denaturation and functional properties (emulsifying, foaming, and gelling properties) of egg white obtained from pasteurized eggs (EWP) were compared with those of unpasteurized eggs (EWUP). Data from differential scanning calorimeter showed that the EWP (ovotransferin, lysozyme, and ovalbumin) denatured at lower temperatures and required lower denaturation enthalpies than EWUP, indicating a partial loss of protein structure during the pasteurization process in the pasteurized eggs. The emulsion and foam stability formed from EWP were significantly (P < 0.05) lower than those of EWUP, however the EWP formed stronger gels than EWUP. To assess suitability of EWP as a cake ingredient, angel food cake was prepared using both egg whites. As compared to EWUP-cake, EWP-cake was significantly (P < 0.05) lower in volume, cohesiveness and springiness values, but significantly (P < 0.05) higher in hardness, gumminess and chewiness. Overall, the sensory panelists gave significantly (P < 0.05) higher scores for angel food cake prepared with EWUP. The differences in functional properties of egg white proteins and the quality of cake were due mainly to the higher levels of denaturation attained by EWP as a result of the pasteurization process.
    Matched MeSH terms: Calorimetry, Differential Scanning
  15. Ho, L. H., Noor Aziah, A. A.
    Dough mixing and thermal properties including the pasting profiles of various commercial wheat flour (WF)-banana pseudostem flour (BP)-hydrocolloid blends were determined using a farinograph, differential scanning calorimetry (DSC) and a rapid-visco analyser (RVA). The prepared blends were WF, WF substituted with 10% BP (10BP) and 10BP with added 0.8% w/w (flour weight basis) xanthan gum (XG) or sodium carboxymethylcellulose (CMC) (10BPX and 10BPC, respectively). The dough of 10BP and the doughs containing XG or CMC reduced stability and breakdown time compared with the WF dough. All dough containing BP demonstrated greater water absorption and mixing tolerance index values than the WF dough. The substitution of 10% BP into WF and the addition of hydrocolloids did not significantly affect the conclusion temperature (Tc) of the mixture, but did increased the onset temperature (To), peak temperature (Tp) and decreased the gelatinisation enthalpy change (ΔHg) of the blends. Samples of 10BP, 10BPX and 10BPC significantly decreased (p
    Matched MeSH terms: Calorimetry, Differential Scanning
  16. Siregar, Januar Parlaungan, Mohd. Sapuan Salit, Mohd. Zaki Ab. Rahman, Khairul Zaman Hj. Mohd. Dahlan
    This paper studied the thermal behaviour of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite. Thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC) analysis were used to measure the thermal characteristic of HIPS/PALF composites. In particular, the TGA analysis was utilized to measure the degradation and decomposition of materials in neat polystyrene, pineapple fibre, and the composites. The measurements were carried out in the temperature of 25°C – 800°C, at a heating rate of 20°C min-1 and the nitrogen gas flow was 50 mL min-1. The temperature of the DSC analysis was programmed to be between 25°C – 300°C. The results from TGA analysis show that the addition of pineapple fibre has improved the thermal stability of the composites as compared to neat HIPS. In addition, the effects of compatibilising agent and surface modification of PALF with alkali treated were also determined and compared.
    Matched MeSH terms: Calorimetry, Differential Scanning
  17. Arif, M.A.M., Omar, M.Z., Muhamad, N.
    The effect of solid solution treatment on semisolid microstructure of Zn-22Al with developed dendrites was investigated. Zn-22Al is a zinc-based alloy with aluminium as its main alloying element. Producing Zn-22Al product by semisolid metal processing (SSM) offers significant advantages, such as reduction of macrosegregations, porosity and low forming efforts. Meanwhile, thermal and microstructure analyses of Zn-22Al alloy were studied using differential scanning calorimeter (DSC) and Olympus optical microscope. Solidus and liquidus of the alloy can be determined by DSC analysis. In addition, changes to the microstructures in response to solid solution treatments were also analyzed. The major effort of all the semi-solid technologies is the generation of small and spherical morphologies. Prior to the generation of spherical morphologies, the fine grains should be first produced. The as-cast samples were isothermally held at 315°C, ranging from 0.5 to 5 hours before they were partially re-melted at semisolid temperature of 438°C to produce solid globular grains structure in liquid matrix. The results indicated that a non-dendritic semisolid microstructure could not be obtained if the traditionally cast Zn-22Al alloy with developed dendrites was directly subjected to partial remelting. After solid solution treatment at 315°C, the black interdendritic eutectics were dissolved and gradually transformed into ß structure when the treatment time was increased. The microstructure of the solid solution treated sample changed into a small globular structure with the best shape factor of 0.9 and this corresponded to 40±16µm when the sample was treated for 3 hours, followed by directly partial remelting into its semi solid zone.
    Matched MeSH terms: Calorimetry, Differential Scanning
  18. Mohd Cairul Iqbal Mohd Amin, Abadi Gumah Abadi, Naveed Ahmad, Haliza Katas, Jamia Azdina Jamal
    Sains Malaysiana, 2012;41:561-568.
    There has been an increasing interest in the use of natural materials as drug delivery vehicles due to their biodegradability, biocompatibility and ready availability. These properties make bacterial cellulose (BC), from nata de coco, a promising biopolymer for drug delivery applications. The aim of this study was to investigate the film-coating and drug release properties of this biopolymer. Physicochemical, morphological and thermal properties of BC films were studied. Model tablets were film coated with BC, using a spray coating technique, and in vitro drug release studies of these tablets were investigated. It was found that BC exhibited excellent ability to form soft, flexible and foldable films without the addition
    of any plasticizer. They were comparable to Aquacoat ECD (with plasticizer) in tensile strength, percentage elongation and elasticity modulus. Differential scanning calorimetry (DSC) BC showed a high Tg value indicating thermally stability of films. These results suggest that BC can be used as novel aqueous film-coating agent with lower cost and better film forming properties than existing film-coating agents.
    Matched MeSH terms: Calorimetry, Differential Scanning
  19. Jesuarockiam N, Jawaid M, Zainudin ES, Thariq Hameed Sultan M, Yahaya R
    Polymers (Basel), 2019 Jun 26;11(7).
    PMID: 31247898 DOI: 10.3390/polym11071085
    The aim of the present research work is to enhance the thermal and dynamic mechanical properties of Kevlar/Cocos nucifera sheath (CS)/epoxy composites with graphene nano platelets (GNP). Laminates were fabricated through the hand lay-up method followed by hot pressing. GNP at different wt.% (0.25, 0.5, and 0.75) were incorporated with epoxy resin through ultra-sonication. Kevlar/CS composites with different weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were fabricated while maintaining a fiber/matrix weight ratio at 45/55. Thermal degradation and viscoelastic properties were evaluated using thermogravimetric analysys (TGA), differential scanning calorimetric (DSC) analysis, and a dynamic mechanical analyser (DMA). The obtained results revealed that Kevlar/CS (25/75) hybrid composites at 0.75 wt.% of GNP exhibited similar thermal stability compared to Kevlar/epoxy (100/0) composites at 0 wt.% of GNP. It has been corroborated with DSC observation that GNP act as a thermal barrier. However, DMA results showed that the Kevlar/CS (50/50) hybrid composites at 0.75 wt.% of GNP exhibited almost equal viscoelastic properties compared to Kevlar/epoxy (100/0) composites at 0 wt.% GNP due to effective crosslinking, which improves the stress transfer rate. Hence, this research proved that Kevlar can be efficiently (50%) replaced with CS at an optimal GNP loading for structural applications.
    Matched MeSH terms: Calorimetry, Differential Scanning
  20. Mat Uzir Wahi, Azman Hassan, Akos Noel Ibrahim, Nurhayati Ahmad Zawawi, Kunasegeran K
    Sains Malaysiana, 2015;44:1615-1623.
    Polylactic acid (PLA)/Epoxidized natural rubber (ENR-50) blends were prepared by melt extrusion followed by injection
    molding to fabricate the test samples. The effect of ENR-50 loadings on the morphological, mechanical, chemical
    resistance and water absorption properties of the blends were studied using standard methods. The toughness of the
    blend improved with ENR loading up to 20 wt. % but flexural and tensile strength decreased. The balanced mechanical
    properties were obtained at 20 wt. % ENR-50 loading. SEM showed good distribution and increased ENR particle size
    as ENR content increased from 10 to 30 wt. %. The differential scanning calorimeter (DSC) showed a steady drop in
    crystallization temperature (Tc
    ) as ENR content increases while the glass transition temperature (Tg
    ) remained unchanged.
    Water absorption was observed to increase with ENR loadings. Increase in ENR content was also observed to reduce the
    chemical resistance of the blends.
    Matched MeSH terms: Calorimetry, Differential Scanning
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links