Displaying all 19 publications

Abstract:
Sort:
  1. Wee SY, Aris AZ
    Ecotoxicol Environ Saf, 2023 Nov 15;267:115663.
    PMID: 37976959 DOI: 10.1016/j.ecoenv.2023.115663
    Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that have been widely utilized in various industries since the 1940s, and have now emerged as environmental contaminants. In recent years, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been restricted and replaced with several alternatives. The high persistence, bioaccumulation, and toxicity of these substances have contributed to their emergence as environmental contaminants, and several aspects of their behavior remain largely unknown and require further investigation. The trace level of PFAS makes the development of a monitoring database challenging. Additionally, the potential health issues associated with PFAS are not yet fully understood due to ongoing research and inadequate evidence (experimental and epidemiological studies), especially with regard to the combined effects of exposure to PFAS mixtures and human health risks from drinking water consumption. This in-depth review offers unprecedented insights into the exposure pathways and toxicological impacts of PFAS, addressing critical knowledge gaps in their behaviors and health implications. It presents a comprehensive NABC-Needs, Approach, Benefits, and Challenges-analysis to guide future strategies for the sustainable monitoring and management of these pervasive environmental contaminants.
    Matched MeSH terms: Caprylates/toxicity
  2. Abdullah Soheimi SS, Abdul Rahman A, Abd Latip N, Ibrahim E, Sheikh Abdul Kadir SH
    PMID: 34444092 DOI: 10.3390/ijerph18168345
    Perfluorinated compounds (PFCs) are non-biodegradable synthetic chemical compounds that are widely used in manufacturing many household products. Many studies have reported the association between PFCs exposure with the risk of developing cardiovascular diseases (CVDs). However, those reports are still debatable, due to their findings. Thus, this review paper aimed to analyse the association of PFCs compound with CVDs and their risk factors in humans by systematic review and meta-analysis. Google Scholar, PubMed and ScienceDirect were searched for PFCs studies on CVDs and their risk from 2009 until present. The association of PFCs exposure with the prevalence of CVDs and their risk factors were assessed by calculating the quality criteria, odds ratios (ORs), and 95% confidence intervals (CIs). CVDs risk factors were divided into serum lipid profile (main risk factor) and other known risk factors. The meta-analysis was then used to derive a combined OR test for heterogeneity in findings between studies. Twenty-nine articles were included. Our meta-analysis indicated that PFCs exposure could be associated with CVDs (Test for overall effect: z = 2.2, p = 0.02; Test for heterogeneity: I2 = 91.6%, CI = 0.92-1.58, p < 0.0001) and their risk factors (Test for overall effect: z = 4.03, p < 0.0001; Test for heterogeneity: I2 = 85.8%, CI = 1.00-1.14, p < 0.0001). In serum lipids, total cholesterol levels are frequently reported associated with the exposure of PFCs. Among PFCs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure increased the risk of CVDs than other types of PFCs. Although the risk of PFOA and PFOS were positively associated with CVDs and their risk factors, more observational studies shall be carried out to identify the long-term effects of these contaminants in premature CVDs development in patients.
    Matched MeSH terms: Caprylates/toxicity
  3. Razak MR, Aris AZ, Zainuddin AH, Yusoff FM, Balia Yusof ZN, Kim SD, et al.
    Chemosphere, 2023 Feb;313:137377.
    PMID: 36457264 DOI: 10.1016/j.chemosphere.2022.137377
    Per- and polyfluoroalkyl substances (PFAS) are gaining worldwide attention because of their toxicity, bioaccumulative and resistance to biological degradation in the environment. PFAS can be categorised into endocrine disrupting chemicals (EDCs) and identified as possible carcinogenic agents for the aquatic ecosystem and humans. Despite this, only a few studies have been conducted on the aquatic toxicity of PFAS, particularly in invertebrate species such as zooplankton. This study evaluated the acute toxicity of two main PFAS, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), by using freshwater cladocerans (Moina micrura) as bioindicators. This study aimed to assess the adverse effects at different levels of organisations such as organ (heart size and heart rate), individual (individual size and mortality) and population (lethal concentration, LC50). PFOA was shown to be more hazardous than PFOS, with the LC50 values (confidence interval) of 474.7 (350.4-644.5) μg L-1 and 549.6 (407.2-743.9) μg L-1, respectively. As the concentrations of PFOS and PFOA increased, there were declines in individual size and heart rate as compared to the control group. The values of PNECs acquired by using the AF method (PNECAF) for PFOA and PFOS were 0.4747 and 0.5496 μg L-1, respectively. Meanwhile, the PNEC values obtained using the SSD method (PNECSSD) were 1077.0 μg L-1 (PFOA) and 172.5 μg L-1 (PFOS). PNECAF is more protective and conservative compared to PNECSSD. The findings of this study have significant implications for PFOS and PFOA risk assessment in aquatic environments. Thus, it will aid freshwater sustainability and safeguard the human dependency on water resources.
    Matched MeSH terms: Caprylates/toxicity
  4. Suja F, Pramanik BK, Zain SM
    Water Sci Technol, 2009;60(6):1533-44.
    PMID: 19759456 DOI: 10.2166/wst.2009.504
    Perfluorinated compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA) have been recognized as emerging environmental pollutants because of their ubiquitous occurrence in the environment, biota and humans. The paper focuses on the distribution, bioaccumulation and toxic effects of PFOS and PFOA in the water. From the available literature, tap and surface water samples in several countries were found to be contaminated with PFOS and PFOA. These compounds were detected globally in the tissues of fish, bird and marine mammals. Their concentrations from relatively more industrialized areas were greater than those from the less populated and remote locations. Blood samples of occupationally exposed people and the general population in various countries were found to contain PFOS and PFOA which suggested a possibility of atmospheric transport of these compounds. There is still a death of information about the environmental pathways of PFOS and PFOA. The presence of these compounds in the tap water, surface water and animal and human tissues indicates their global contamination and bioaccumulative phenomena in the ecosystems.
    Matched MeSH terms: Caprylates/blood; Caprylates/metabolism*; Caprylates/toxicity*
  5. Zango ZU, Khoo KS, Garba A, Kadir HA, Usman F, Zango MU, et al.
    Environ Res, 2023 Mar 15;221:115326.
    PMID: 36690243 DOI: 10.1016/j.envres.2023.115326
    Perfluorooctanoic acid (PFOA) has been identified as the most toxic specie of the family of perfluorinated carboxylic acids (PFCAs). It has been widely distributed and frequently detected in environmental wastewater. The compound's unique features such as inherent stability, rigidity, and resistance to harsh chemical and thermal conditions, due to its multiple and strong C-F bonds have resulted in its resistance to conventional wastewater remediations. Photolysis and bioremediation methods have been proven to be inefficient in their elimination, hence this article presents intensive literature studies and summarized findings reported on the application of advanced oxidation processes (AOPs) and photocatalytic degradation techniques as the best alternatives for the PFOA elimination from wastewater. Techniques of persulfate, photo-Fenton, electrochemical, photoelectrochemical and photocatalytic degradation have been explored and their mechanisms for the degradation and defluorination of the PFOA have been demonstrated. The major advantage of AOPs techniques has been centralized on the generation of active radicals such as sulfate (SO4•-) hydroxyl (•OH). While for the photocatalytic process, photogenerated species (electron (e) and holes (h + vb)) initiated the process. These active radicals and photogenerated species possessed potentiality to attack the PFOA molecule and caused the cleavage of the C-C and C-F bonds, resulting in its efficient degradation. Shorter-chain PFCAs have been identified as the major intermediates detected and the final stage entails its complete mineralization to carbon dioxide (CO2) and fluoride ion (F-). The prospects and challenges associated with the outlined techniques have been highlighted for better understanding of the subject matter for the PFOA elimination from real wastewaters.
    Matched MeSH terms: Caprylates
  6. Pramanik BK, Pramanik SK, Sarker DC, Suja F
    Environ Technol, 2017 Aug;38(15):1937-1942.
    PMID: 27666670 DOI: 10.1080/09593330.2016.1240716
    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.
    Matched MeSH terms: Caprylates/chemistry*
  7. Razaif-Mazinah MRM, Anis SNS, Harun HI, Rashid KA, Annuar MSM
    Biotechnol Appl Biochem, 2017 Mar;64(2):259-269.
    PMID: 26800648 DOI: 10.1002/bab.1482
    Pseudomonas putida Bet001 and Delftia tsuruhatensis Bet002, isolated from palm oil mill effluent, accumulated poly(3-hydroxyalkanoates) (PHAs) when grown on aliphatic fatty acids, sugars, and glycerol. The substrates were supplied at 20:1 C/N mole ratio. Among C-even n-alkanoic acids, myristic acid gave the highest PHA content 26 and 28 wt% in P. putida and D. tsuruhatensis, respectively. Among C-odd n-alkanoic acids, undecanoic gave the highest PHA content at 40 wt% in P. putida and 46 wt% in D. tsuruhatensis on pentadecanoic acid. Sugar and glycerol gave <10 wt% of PHA content for both bacteria. Interestingly, D. tsuruhatensis accumulated both short- and medium-chain length PHA when supplied with n-alkanoic acids ranging from octanoic to lauric, sucrose, and glycerol with 3-hydroxybutyrate as the major monomer unit. In P. putida, the major hydroxyalkanoates unit was 3-hydroxyoctanoate and 3-hydroxydecanoate when grown on C-even acids. Conversely, 3-hydroxyheptanoate, 3-hydrxoynonanoate, and 3-hydroxyundecanoate were accumulated with C-odd acids. Weight-averaged molecular weight (Mw ) was in the range of 53-81 kDa and 107-415 kDa for P. putida and D. tsuruhatensis, respectively. Calorimetric analyses indicated that both bacteria synthesized semicrystalline polymer with good thermal stability with degradation temperature (Td ) ranging from 178 to 282 °C.
    Matched MeSH terms: Caprylates
  8. Abdulbari HA, Basheer EAM
    Sci Rep, 2019 08 29;9(1):12576.
    PMID: 31467344 DOI: 10.1038/s41598-019-49071-7
    Directional solvent extraction is one of the promising membrane-less seawater desalination method. This technique was not extensively investigated due the poor mixing and separation performances of its bench-scale system. It is believed that, overcoming these drawbacks is possible now with the rapid development of microfluidics technology that enabled high-precession micro mixing and separation. This work presents microfluidics chip for extracting and separating salt from seawater. The chip was designed with two sections for extraction and separation. In both sections, the liquids were separated using capillary channels perpendicular to the main stream. The main channels were designed to be 400 µm in width and 100 µm in height. Two streams inlets were introduced through a Y-junction containing octanoic acid as the organic phase and saltwater as the aqueous phase. The desalination performance was investigated at four different temperatures and five different solvent flow rates. Water product salinity was recorded to be as low as 0.056% (w/w) at 60 °C and 40 mL/h. A maximum water yield of 5.2% was achieved at 65 °C and 40 mL/h with a very low solvent residual (70 ppm). The chip mass transfer efficiency was recorded to be as high as 68% under similar conditions. The fabricated microfluidic desalination system showed a significant improvement in terms of water yield and separation efficiency over the conventional macroscale. The high performance of this microsystem resulted from its ability to achieve a high mixing efficiency and separate phases selectively and that will provide a good platform in the near future to develop small desalination kits for personal use.
    Matched MeSH terms: Caprylates
  9. Kunacheva C, Boontanon SK, Fujii S, Tanaka S, Musirat C, Artsalee C, et al.
    Water Sci Technol, 2009;60(4):975-82.
    PMID: 19700836 DOI: 10.2166/wst.2009.462
    Perfluorinated compounds (PFCs) have been used for many years, and are distributed all over the world. This study focused on occurrences of PFCs, especially perfluorooctane sulfonate (PFOS) and perfluorooctonoic acid (PFOA) in Thai rivers and industrial estate discharges, while comparing results with rivers of other Asian countries (Japan, China, and Malaysia). Surveys were conducted in Chao Phraya River, Bangpakong River and three industrial estates. A solid phase extraction (SPE) and HPLC-ESI-MS/MS were used for the analysis of these chemicals. The average concentrations of PFOS and PFOA were 1.9 and 4.7 ng/L, respectively in Chao Phraya River, while lower concentrations were detected in Bangpakong River with the averages of 0.7 ng/L for both PFOS and PFOA. Higher concentrations were detected in all industrial estate discharges with the averages of 64.3 ng/L for PFOA and 17.9 ng/L for PFOS., Total loadings from three industrial estates were 1.93 g/d for PFOS and 11.81 g/d for PFOA. The concentration levels in Thai rivers were less than rivers in Japan, China, and Malaysia. However, PFCs loading rate of Chao Phraya River was much higher than Yodo River (Japan), due to the higher flow rate. The other six PFCs were found above the Limit of Quantification (LOQ) in most samples. PFHxS and PFNA were also highly detected in some river samples.
    Matched MeSH terms: Caprylates/analysis*
  10. Lasekan O, Hussein FK
    Chem Cent J, 2018 Dec 19;12(1):140.
    PMID: 30569201 DOI: 10.1186/s13065-018-0505-3
    BACKGROUND: Pineapple is highly relished for its attractive sweet flavour and it is widely consumed in both fresh and canned forms. Pineapple flavour is a blend of a number of volatile and non-volatile compounds that are present in small amounts and in complex mixtures. The aroma compounds composition may be used for purposes of quality control as well as for authentication and classification of pineapple varieties.

    RESULTS: The key volatile compounds and aroma profile of six pineapple varieties grown in Malaysia were investigated by gas chromatography-olfactometry (GC-O), gas-chromatography-mass spectrometry and qualitative descriptive sensory analysis. A total of 59 compounds were determined by GC-O and aroma extract dilution analysis. Among these compounds, methyl-2-methylbutanoate, methyl hexanoate, methyl-3-(methylthiol)-propanoate, methyl octanoate, 2,5-dimethyl-4-methoxy-3(2H)-furanone, δ-octalactone, 2-methoxy-4-vinyl phenol, and δ-undecalactone contributed greatly to the aroma quality of the pineapple varieties, due to their high flavour dilution factor. The aroma of the pineapples was described by seven sensory terms as sweet, floral, fruity, fresh, green, woody and apple-like.

    CONCLUSION: Inter-relationship between the aroma-active compounds and the pineapples revealed that 'Moris' and 'MD2' covaried majorly with the fruity esters, and the other varieties correlated with lesser numbers of the fruity esters. Hierarchical cluster analysis (HCA) was used to establish similarities among the pineapples and the results revealed three main groups of pineapples.

    Matched MeSH terms: Caprylates
  11. Chanasit W, Hodgson B, Sudesh K, Umsakul K
    Biosci Biotechnol Biochem, 2016 Jul;80(7):1440-50.
    PMID: 26981955 DOI: 10.1080/09168451.2016.1158628
    Conditions for the optimal production of polyhydroxyalkanoate (PHA) by Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) were determined by response surface methodology. These were an initial carbon to nitrogen ratio (C/N) of 40 (mole/mole), an initial pH of 7.0, and a temperature of 35 °C. A biomass and PHA concentration of 3.65 g/L and about 2.6 g/L (77% DCW), respectively, were achieved in a growth associated process using 20 g/L glycerol in the BLW after 36 h of exponential growth. The PHA monomer compositions were 3HB (3-hydroxybutyrate), a short-chain-length-PHA, and the medium-chain-length-PHA e.g. 3-hydroxyoctanoate and 3-hydroxydecanoate. Both the phbC and phaC genes were characterized. The phbC enzyme had not been previously detected in a Pseudomonas mendocina species. A 2.15 g/L of an exopolysaccharide, alginate, was also produced with a similar composition to that of other Pseudomonas species.
    Matched MeSH terms: Caprylates
  12. Lian W, Wang W, Tan CP, Wang J, Wang Y
    Bioprocess Biosyst Eng, 2019 Feb;42(2):321-329.
    PMID: 30421172 DOI: 10.1007/s00449-018-2036-7
    LML-type structured lipids are one type of medium- and long-chain triacylglycerols. LML was synthesized using immobilized Talaromyces thermophilus lipase (TTL)-catalyzed interesterification of tricaprylin and ethyl linoleate. The resin AB-8 was chosen, and the lipase/support ratio was determined to be 60 mg/g. Subsequently, the immobilized TTL with strict sn-1,3 regiospecificity was applied to synthesize LML. Under the optimized conditions (60 °C, reaction time 6 h, enzyme loading of 6% of the total weight of substrates, substrate of molar ratio of ethyl linoleate to tricaprylin of 6:1), Triacylglycerols with two long- and one medium-chain FAs (DL-TAG) content as high as 52.86 mol% was obtained. Scale-up reaction further verified the industrial potential of the established process. The final product contained 85.24 mol% DL-TAG of which 97 mol% was LML after purification. The final product obtained with the high LML content would have substantial potential to be used as functional oils.
    Matched MeSH terms: Caprylates
  13. Khor YP, Hew KS, Abas F, Lai OM, Cheong LZ, Nehdi IA, et al.
    Foods, 2019 Oct 11;8(10).
    PMID: 31614487 DOI: 10.3390/foods8100475
    The stability of refined, bleached, and deodorized palm olein (RBDPO) was studied under controlled heating conditions. RBDPO was heated continuously for 24 h at 160, 170, and 180 °C, with oil sampled at four hour intervals. Thermo-oxidative alterations were measured through various parameters, such as monomeric oxidized triacylglycerols (oxTAG), total polar compounds (TPC), polymerized triacylglycerols (PTG), oxidative stability, and fatty acid composition. After 24 h of heating, the TPC and triacylglycerol oligomers showed a linear increase with heating time at all heating temperatures. At the end of the heating study, more epoxy acids were formed than keto and hydroxy acids. Moreover, caprylic acid, which was not present in fresh oil, was formed in significant amounts. The increase in oxTAG was strongly correlated with the increase in the p-anisidine value and total oxidation value. The decreases in diacylglycerol and free fatty acids were strongly correlated with an increase in PTG.
    Matched MeSH terms: Caprylates
  14. Mohamed ME, Pahirulzaman KA, Lazarus CM
    Mol Biotechnol, 2016 Mar;58(3):172-8.
    PMID: 26718544 DOI: 10.1007/s12033-015-9911-0
    Pyrethrins are natural insecticides, which accumulate to high concentrations in pyrethrum (Chrysanthemum cinerariaefolium) flowers. Synthetic pyrethroids are more stable, more efficacious and cheaper, but contemporary requirements for safe and environmentally friendly pesticides encourage a return to the use of natural pyrethrins, and this would be favoured by development of an efficient route to their production by microbial fermentation. The biosynthesis of pyrethrins involves ester linkage between an acid moiety (chrysanthemoyl or pyrethroyl, synthesised via the mevalonic acid pathway from glucose), and an alcohol (pyrethrolone). Pyrethrolone is generated from 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid, which originates from α-linolenic acid via the jasmonic acid biosynthetic cascade. The first four genes in this cascade, encoding lipoxygenase 2, allene-oxide synthase, allene-oxide cyclase 2 and 12-oxophytodienoic acid reductase 3, were amplified from an Arabidopsis thaliana cDNA library, cloned in a purpose-built fungal multigene expression vector and expressed in Aspergillus oryzae. HPLC-MS analysis of the transgenic fungus homogenate gave good evidence for the presence of 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid.
    Matched MeSH terms: Caprylates/metabolism*
  15. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, et al.
    Environ Sci Technol, 2004 Sep 1;38(17):4489-95.
    PMID: 15461154
    Perfluorooctanesulfonyl fluoride based compounds have been used in a wide variety of consumer products, such as carpets, upholstery, and textiles. These compounds degrade to perfluorooctanesulfonate (PFOS), a persistent metabolite that accumulates in tissues of humans and wildlife. Previous studies have reported the occurrence of PFOS, perfluorohexanesulfonate (PFHxS), perfluorooctanoate (PFOA), and perfluorooctanesulfonamide (PFOSA) in human sera collected from the United States. In this study, concentrations of PFOS, PFHxS, PFOA, and PFOSA were measured in 473 human blood/serum/plasma samples collected from the United States, Colombia, Brazil, Belgium, Italy, Poland, India, Malaysia, and Korea. Among the four perfluorochemicals measured, PFOS was the predominant compound found in blood. Concentrations of PFOS were the highest in the samples collected from the United States and Poland (>30 ng/mL); moderate in Korea, Belgium, Malaysia, Brazil, Italy, and Colombia (3 to 29 ng/mL); and lowest in India (<3 ng/mL). PFOA was the next most abundant perfluorochemical in blood samples, although the frequency of occurrence of this compound was relatively low. No age- or gender-related differences in the concentrations of PFOS and PFOA were found in serum samples. The degree of association between the concentrations of four perfluorochemicals varied, depending on the origin of the samples. These results suggested the existence of sources with varying levels and compositions of perfluorochemicals, and differences in exposure patterns to these chemicals, in various countries. In addition to the four target fluorochemicals measured, qualitative analysis of selected blood samples showed the presence of other perfluorochemicals such as perfluorodecanesulfonate (PFDS), perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA), and perfluoroundecanoic acid (PFUnDA) in serum samples, at concentrations approximately 5- to 10-fold lower than the concentration of PFOS. Further studies should focus on identifying sources and pathways of human exposure to perfluorochemicals.
    Matched MeSH terms: Caprylates/blood*
  16. Tahziz A, Mohamad Haron DE, Aziz MY
    Molecules, 2020 May 16;25(10).
    PMID: 32429475 DOI: 10.3390/molecules25102335
    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are widely used in products, and are known for their water and grease repellent properties. The persistence nature and potential toxicity of these substances have raised substantial concerns about health effects. Regarding humans, food consumption has reportedly been a significant source of exposure for both compounds. Hence, this study was performed to develop and validate an analytical method for PFOS and PFOA in egg yolks using liquid chromatographic tandem mass spectrometry (LC-MS/MS) followed by the determination of concentration of both compounds in the yolk of poultry eggs in Malaysia. A total of 47 poultry egg yolk samples were extracted by a simple protein precipitation technique using acetonitrile. The analytical method was developed using LC-MS/MS and validated based on the Food and Drug Administration (FDA)'s Bioanalytical Method Validation guidelines. The results revealed that PFOS was quantitatively detected in six samples, with the concentration range between 0.5 and 1.01 ng g-1. Among these, five samples were from home-produced chicken eggs, and one sample was from a quail egg. The levels of PFOA in all samples were below the quantifiable limit (<0.1 ng g-1). This indicated that the contamination of PFCs in poultry eggs were mostly attributed to the nature of free foraging animals, which had direct contact with the contaminants in soil and feed. In conclusion, a fast and robust analytical method for analyzing PFOS and PFOA in egg yolk samples using LC-MS/MS was successfully developed and validated. The presence of these emerging contaminants in this study signified widespread pollution in the environment.
    Matched MeSH terms: Caprylates/analysis*
  17. Eid AM, El-Enshasy HA, Aziz R, Elmarzugi NA
    Int J Nanomedicine, 2014;9:4685-95.
    PMID: 25336948 DOI: 10.2147/IJN.S66180
    There is an increasing trend among pharmaceutical industries to use natural bioactive materials as medicinal agents and to use new technologies such as self-nanoemulsifying systems. The solubility and bioavailability of poorly soluble drugs can be enhanced by self-nanoemulsifying systems. Swietenia oil is frequently used because of its antimicrobial, antimutagenic, and anticancer bioactive medical properties. This study was conducted to develop self-nanoemulsifying systems for Swietenia oil that will enhance the anti-inflammatory activity of the oil. The self-emulsifying systems developed for Swietenia oil in this study were constructed using ternary phase diagrams and contained the nonionic surfactants Labrasol(®), Tween 20, Capmul(®), and Labrafil(®). The effect of these surfactants on the formulation was examined. The mean droplet size of Swietenia oil as well as their distribution, appearance, viscosity, and spreading times were studied to find the optimum formula, which contained droplets that were less than 200 nm. The next step was to test the anti-inflammatory properties of the optimum formula using a carrageenan-induced rat paw edema test. The results from this test were compared to the oil solution. Different oil/surfactants mixtures had various emulsification properties that were related to the size of their droplets. Tween 20 is a good surfactant to use in self-emulsifying systems because it produces droplets of nano-size. Mixtures of Capmul/Labrasol at a ratio of 2:1 and Labrafil/Tween 20 at a ratio of 1:2 were able to produce self-nanoemulsifying formulations containing Swietenia oil concentrations that ranged from 20%-50%. Nanoemulsion occurred when the size of the droplets fell below 200 nm with low size distribution (<0.3) after being gently mixed with water. It was found that the hydrophilic/lipophilic balance value affected the ternary phase diagram behavior of Swietenia oil and surfactants. In addition, the anti-inflammatory properties of Swietenia oil were greater in the self-nanoemulsifying systems than in the oil solution.
    Matched MeSH terms: Caprylates/chemistry
  18. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Raja Abd Rahman RNZ, Mohamad Ali MS
    Molecules, 2017 Aug 12;22(8).
    PMID: 28805665 DOI: 10.3390/molecules22081312
    The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208, which is located next to the nucleophilic Ser-207 has a focal function in influencing substrate accessibility and flexibility of the catalytic pocket. Based on molecular dynamic simulations, it was found that Leu-208 strongly facilitates the lid 2 opening via its side-chain. The KM and Kcat/KM of L208A mutant were substrate dependent as it preferred a smaller-chain ester (pNP-caprylate) as compared to medium (pNP-laurate) or long-chain (pNP-palmitate) esters. In esterification of ethyl hexanoate, L208A promotes a higher ester conversion rate at 20 °C but not at 30 °C, as a 27% decline was observed. Interestingly, the wild-type (WT) lipase's conversion rate was found to increase with a higher temperature. WT lipase AMS8 esterification was higher in toluene as compared to L208A. Hence, the results showed that Leu-208 of AMS8 lipase plays an important role in steering a broad range of substrates into its active site region by regulating the flexibility of this region. Leu-208 is therefore predicted to be crucial for its role in interfacial activation and catalysis in toluene.
    Matched MeSH terms: Caprylates/chemistry
  19. Alcantara KP, Zulfakar MH, Castillo AL
    Int J Pharm, 2019 Nov 25;571:118705.
    PMID: 31536765 DOI: 10.1016/j.ijpharm.2019.118705
    Mupirocin is a promising broad-spectrum antibiotic that is effective in treating MRSA infections. However, due to its rapid elimination and hydrolysis following injection and high protein binding, current therapeutic use is limited to topical administration. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug degradation by encapsulation. The objective of this research is to develop and characterize Mupirocin-Loaded Nanostructured Lipid Carriers (M-NLC) for intravascular administration. The MNLC was produced by a combination of high shear homogenization and high pressure homogenization of solid (cetyl palmitate) and liquid (caprylic/caprylic acid) biocompatible lipids in 5 different ratios. The mean particle size, polydispersity index (PDI) and the zeta potential (ZP) of the MNLC formulations were between 99.8 and 235 nm, PDI lower than 0.164, ZP from -25.96 to -19.53 and pH ranging from 6.28-6.49. The MNLC formulation also enhances the anti-bacterial activity of mupirocin. All formulation showed sustained drug release and good physical characteristics for three months storage under 25 °C. It also revealed that the MNLC 1 is safe at 250 mg/kg dose in rats. The MNLC 1 also showed a significant increase in plasma concentration in rabbits following IV administration thus, demonstrating an enhancement on its pharmacokinetic profile as compared to free mupirocin.
    Matched MeSH terms: Caprylates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links