Displaying publications 1 - 20 of 111 in total

Abstract:
Sort:
  1. Nur Hidayah J, Abdul Razis AF, Jambari NN, Chai LC, You L, Sanny M
    Food Chem Toxicol, 2024 Mar;185:114502.
    PMID: 38346572 DOI: 10.1016/j.fct.2024.114502
    This study aimed to estimate the Malaysian adult population's current dietary exposure and margin of exposure (MOE) to the carcinogenic processing contaminant, acrylamide. A total of 448 samples from 11 types of processed foods were collected randomly throughout Malaysia in the year 2015 and 2016. Acrylamide was analysed in samples using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) with a limit of detection (LOD) of 10 μg/kg and a limit of quantification (LOQ) of 25 μg/kg. The highest average level of acrylamide (772 ± 752 μg/kg) was found in potato crisps, followed by French fries (415 ± 914 μg/kg) and biscuits (245 ± 195 μg/kg). The total acrylamide exposure for the adult Malaysian was 0.229 and 1.77 μg/kg body weight per day for average and high consumers, respectively. The MOE were 741 and 1875 for the average consumer based on cancer and non-cancer effects of acrylamide, respectively. Meanwhile, for high consumers, the MOE is 96 for cancer and 243 for non-cancer effects. These findings indicate potential carcinogenic risks from acrylamide exposure among Malaysian adults, especially in Malay and other Bumiputra groups compared to Chinese, Indian, and other ethnic groups, while non-cancer effects appeared less concerning.
    Matched MeSH terms: Carcinogens/analysis; Carcinogens/toxicity
  2. Perkins AN, Inayat-Hussain SH, Deziel NC, Johnson CH, Ferguson SS, Garcia-Milian R, et al.
    Environ Res, 2019 02;169:163-172.
    PMID: 30458352 DOI: 10.1016/j.envres.2018.10.018
    Currently, there are >11,000 synthetic turf athletic fields in the United States and >13,000 in Europe. Concerns have been raised about exposure to carcinogenic chemicals resulting from contact with synthetic turf fields, particularly the infill material ("crumb rubber"), which is commonly fabricated from recycled tires. However, exposure data are scant, and the limited existing exposure studies have focused on a small subset of crumb rubber components. Our objective was to evaluate the carcinogenic potential of a broad range of chemical components of crumb rubber infill using computational toxicology and regulatory agency classifications from the United States Environmental Protection Agency (US EPA) and European Chemicals Agency (ECHA) to inform future exposure studies and risk analyses. Through a literature review, we identified 306 chemical constituents of crumb rubber infill from 20 publications. Utilizing ADMET Predictor™, a computational program to predict carcinogenicity and genotoxicity, 197 of the identified 306 chemicals met our a priori carcinogenicity criteria. Of these, 52 chemicals were also classified as known, presumed or suspected carcinogens by the US EPA and ECHA. Of the remaining 109 chemicals which were not predicted to be carcinogenic by our computational toxicology analysis, only 6 chemicals were classified as presumed or suspected human carcinogens by US EPA or ECHA. Importantly, the majority of crumb rubber constituents were not listed in the US EPA (n = 207) and ECHA (n = 262) databases, likely due to an absence of evaluation or insufficient information for a reliable carcinogenicity classification. By employing a cancer hazard scoring system to the chemicals which were predicted and classified by the computational analysis and government databases, several high priority carcinogens were identified, including benzene, benzidine, benzo(a)pyrene, trichloroethylene and vinyl chloride. Our findings demonstrate that computational toxicology assessment in conjunction with government classifications can be used to prioritize hazardous chemicals for future exposure monitoring studies for users of synthetic turf fields. This approach could be extended to other compounds or toxicity endpoints.
    Matched MeSH terms: Carcinogens*
  3. Madadi R, Mohamadi S, Rastegari M, Karbassi A, Rakib MRJ, Khandaker MU, et al.
    Sci Rep, 2022 Nov 17;12(1):19736.
    PMID: 36396803 DOI: 10.1038/s41598-022-21242-z
    Rapid industrialization and urbanization have resulted in environmental pollution and unsustainable development of cities. The concentration of 12 potentially toxic metal(loid)s in windowsill dust samples (n = 50) were investigated from different functional areas of Qom city with the highest level of urbanization in Iran. Spatial analyses (ArcGIS 10.3) and multivariate statistics including Principal Component Analysis and Spearman correlation (using STATISTICA-V.12) were adopted to scrutinize the possible sources of pollution. The windowsill dust was very highly enriched with Sb (50 mg/kg) and Pb (1686 mg/kg). Modified degree of contamination (mCd) and the pollution load indices (PLIzone) indicate that windowsill dust in all functional areas was polluted in the order of industrial > commercial > residential > green space. Arsenic, Cd, Mo, Pb, Sb, Cu, and Zn were sourced from a mixture of traffic and industrial activities, while Mn in the dust mainly stemmed from mining activities. Non-carcinogenic health risk (HI) showed chronic exposure of Pb for children in the industrial zone (HI = 1.73). The estimations suggest the possible carcinogenic risk of As, Pb, and Cr in the dust. The findings of this study reveal poor environmental management of the city. Emergency plans should be developed to minimize the health risks of dust to residents.
    Matched MeSH terms: Carcinogens/analysis
  4. Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen ZJ, Hoffmann B, et al.
    Environ Int, 2016 Feb;87:66-73.
    PMID: 26641521 DOI: 10.1016/j.envint.2015.11.007
    Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence.
    Matched MeSH terms: Carcinogens
  5. Faridnia F, Hussin AS, Saari N, Mustafa S, Yee LY, Manap MY
    Benef Microbes, 2010 Jun;1(2):149-54.
    PMID: 21831754 DOI: 10.3920/BM2009.0035
    Consumption of probiotics has been associated with decreased risk of colon cancer and reported to have antimutagenic/ anti-carcinogenic properties. One possible mechanism for this effect involves physical binding of the mutagenic compounds, such as heterocyclic amines (HCAs), to the bacteria. Therefore, the objective of this study was to examine the binding capacity of bifidobacterial strains of human origin on mutagenic heterocyclic amines which are suspected to play a role in human cancers. In vitro binding of the mutagens Trp-p-2, IQ, MeIQx, 7,8DiMeIQx and PhIP by three bacterial strains in two media of different pH was analysed using high performance liquid chromatography. Bifidobacterium pseudocatenulatum G4 showed the highest decrease in the total HCAs content, followed by Bifidobacterium longum, and Escherichia coli. pH affects binding capacity; the highest binding was obtained at pH 6.8. Gram-positive tested strains were found to be consistently more effective than the gram-negative strain. There were significant decreases in the amount of HCAs in the presence of different cell concentrations of B. pseudocatenulatum G4; the highest decrease was detected at the concentration of 10(10) cfu/ml. The results showed that HCAs were able to bind with all bacterial strains tested in vitro, thus it may be possible to decrease their absorption by human intestine and increase their elimination via faeces.
    Matched MeSH terms: Carcinogens/metabolism*
  6. Chan YM, Agamuthu P, Mahalingam R
    J Hazard Mater, 2000 Oct 02;77(1-3):209-26.
    PMID: 10946129
    Currently, the generated brake lining waste dust, which contains asbestos as its major component, is disposed of into a secure landfill without any additional treatment. As an alternative to this, solidification/stabilization (S/S) disposal of the dust was investigated using Portland cement alone and Portland cement mixed with activated carbon (AC), as the binders. Toxicity Characteristics Leaching Procedure (TCLP) results on the solidified matrix showed that cement was able to immobilize the heavy metals, Ba, Zn, Cr, Pb, Cu and Fe, to within the limits set by the US EPA for TCLP. Addition of AC to the cement reduced the leaching of heavy metals by an additional 4-24% compared to cement alone. The pH of the TCLP leachate extracted from virgin cement, and from dust treated with cement with or without AC was found to increase to 10.9-12.5 as opposed to an initial value of 4.93 for the TCLP extract for the untreated dust. Results of ANS 16.1 (modified) leach protocol revealed that Ba in cement-treated samples showed the highest leach rate, followed by Zn, Pb, Cr, Cu and Fe. The leach rate of heavy metals decreased with progress in time. Cement mixed with AC exhibited similar leach characteristics, however, the leach rate was lower. The linear relationship between the cumulative fraction leached (CFL) and the square root of leaching time in all cement-based samples indicate that a diffusional process is the controlling transport mechanism for the leaching of the heavy metals. The obtained Leachability Indices (L(i)) of 7.6-9.1 and 8.3-9.5 for cement and cement with AC, respectively, were low but exceeded the guidance value of 6, which clearly indicates that all the heavy metals studied are retained well within solid matrices. Cement-based S/S hardening times increased from 30 to 96 h as the dust content increased from 40 to 70 wt.%. The resulting solid matrices exhibited a compressive strength ranging from 1 to 12 MPa, which was well above the specified limit of 414 kPa for such matrices. An economic analysis indicates that the disposal costs for the dust in the only available secure landfill would increase by 40.3% if one were to go for the cement S/S option. Addition of AC to the cement would escalate this by an additional 43.8%. Although the S/S of brake lining dust using cement effectively immobilized the heavy metals of concern, cost considerations may hinder the commercial adaptation of this technique for waste disposal unless new regulatory demands are implemented.
    Matched MeSH terms: Carcinogens/metabolism*
  7. Shamsudin S, Selamat J, Sanny M, Jambari NN, Sukor R, Praveena SM, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858787 DOI: 10.3390/molecules25173874
    Heterocyclic amines (HCAs) are carcinogenic food toxicants formed in cooked meats, which may increase the risk of cancer development in humans. Therefore, in this study, the effect of stingless bee honey from different botanical origins on the formation of HCAs in grilled beef satay was investigated. HCAs concentration in grilled beef satay was determined by using high performance liquid chromatography (HPLC). In total, six of the most toxigenic HCAs representing aminoimidazo-azaarenes (AIAs) (MeIQx, 4,8-DiMeIQx, and PhIP) and amino carbolines (norharman, harman, and AαC) groups were identified in all the beef samples investigated. A significant reduction in HCAs was observed in grilled beef marinated in honey as compared to beef samples marinated in table sugar (control), in which the reduction of 95.14%, 88.45%, 85.65%, and 57.22% was observed in gelam, starfruit, acacia, and Apis honey marinades, respectively. According to the partial least squares regression (PLS) model, the inhibition of HCAs in grilled beef was shown to be significantly correlated to the antioxidant activity (IC50) of the honey samples. Therefore, the results of this study revealed that the addition of stingless bee honey could play an important role in reducing HCAs in grilled beef.
    Matched MeSH terms: Carcinogens/analysis*
  8. Chong YH, Beng CG
    Med J Malaya, 1965 Sep;20(1):49-50.
    PMID: 4221413
    Matched MeSH terms: Carcinogens*
  9. Jaafar H, Mohamad Idris F, Mohd Nafi SN
    Med Sci Monit, 2009 May;15(5):BR129-34.
    PMID: 19396029
    Administration of 1-methyl-1-nitrosourea (MNU) is considered a simple and rapid method for inducing breast tumors in rats. While most studies focus on the time frame of tumor development, there are little data on the development of breast tumor in relation to tumor size. Thus the current study was carried out to analyze the phenotype of MNU-induced tumors in relation to tumor size.
    Matched MeSH terms: Carcinogens/toxicity*
  10. Yek PNY, Peng W, Wong CC, Liew RK, Ho YL, Wan Mahari WA, et al.
    J Hazard Mater, 2020 08 05;395:122636.
    PMID: 32298946 DOI: 10.1016/j.jhazmat.2020.122636
    We developed an innovative single-step pyrolysis approach that combines microwave heating and activation by CO2 or steam to transform orange peel waste (OPW) into microwave activated biochar (MAB). This involves carbonization and activation simultaneously under an inert environment. Using CO2 demonstrates dual functions in this approach, acting as purging gas to provide an inert environment for pyrolysis while activating highly porous MAB. This approach demonstrates rapid heating rate (15-120 °C/min), higher temperature (> 800 °C) and shorter process time (15 min) compared to conventional method using furnace (> 1 h). The MAB shows higher mass yield (31-44 wt %), high content of fixed carbon (58.6-61.2 wt %), Brunauer Emmett Teller (BET) surface area (158.5-305.1 m2/g), low ratio of H/C (0.3) and O/C (0.2). Activation with CO2 produces more micropores than using steam that generates more mesopores. Steam-activated MAB records a higher adsorption efficiency (136 mg/g) compared to CO2 activation (91 mg/g), achieving 89-93 % removal of Congo Red dye. The microwave pyrolysis coupled with steam or CO2 activation thereby represents a promising approach to transform fruit-peel waste to microwave-activated biochar that remove hazardous dye.
    Matched MeSH terms: Carcinogens
  11. Wong SF, Low KH, Khor SM
    Talanta, 2020 Oct 01;218:121169.
    PMID: 32797922 DOI: 10.1016/j.talanta.2020.121169
    Food contamination is a serious concern because of a high level of chemicals in food causes severe health issues. Safeguarding the public from the risk of adulterated foods has become a challenging mission. Chloropropanols are of importance to food safety and food security because they are common chemical food contaminants and believed to be carcinogenic to humans. In chemical sensing, chloropropanols are challenging analytes owing to the lacking diversity of functional groups and difficulty in targeting the hydroxyl group in aqueous environments. Moreover, because of their small molecular size, the compositions of chloropropanols remain challenging for achieving chromatographic determination. Herein, to simulate human smell and taste sensations, serum albumins, which are protein-based receptors, were introduced as low-selective receptors for differential sensing. Utilizing serum albumins, a fluorophore (PRODAN), and an additive (ascorbic acid), a differential-based optical biosensor array was developed to detect and differentiate chloropropanols. By integrating the sensor array with linear discriminant analysis (LDA), four chloropropanols were effectively differentiated based on their isomerism properties and the number of the hydroxyl groups, even at ultra-low concentration (5 nM). This concentration is far below the maximum tolerable level of 0.18 μM for chloropropanols. The sensing array was then employed for chloropropanols differentiation and quantification in the complex mixtures (e.g., synthetic soy and dark soy sauces). Leave-one-out cross-validation (LOOCV) analysis demonstrated 100% accurate classification for all tests. These results signify our differential sensing array as a practical and powerful tool to speedily identify, differentiate, and even quantify chloropropanols in food matrices.
    Matched MeSH terms: Carcinogens
  12. Farah, D.M.H., Zaibunnisa, A.H., Misnawi
    MyJurnal
    Roasting is an important process that contribute to formation of flavour compounds in cocoa beans. Pyrazines, a by-product of Maillard reaction is one of the character impact compounds that contribute to unique cocoa flavour. Unfortunately during roasting, carcinogenic acrylamide are also produced through Maillard reaction. Therefore, this study was focussed on optimising the roasting conditions using Central Composite Design (CCD) to produce superior quality cocoa beans with high concentration of pyrazines and low concentration of acrylamide. The roasting conditions used were temperatures in the range of 110⁰C to 160⁰C and time ranging from 15 min to 40 min. Roasting conditions significantly (p
    Matched MeSH terms: Carcinogens
  13. Maryam, Z.
    MyJurnal
    Human activities in a large array of industrial and agricultural sectors produce chemical contaminants which are chiefly hydrocarbons of various types that are potentially toxic and carcinogenic to aquatic and terrestrial organisms. Globally, millions of tons of these pollutants are generated annually, and in some areas, they are released indiscriminately to the environment. In order to overcome this problem, microbiological decontamination or bioremediation has been suggested. Bioremediation has been argued to be an efficient, economic, and adaptable alternative to physicochemical remediation. However, to date, such claims of successful bioremediation are often not supported by evidence from toxicity studies. In this regard, luminescent bacteria have been employed in some hydrocarbon remediation experiments to denote reduction in toxicity. In this review, the utilization of luminescence bacteria as toxicity monitoring agent for hydrocarbon remediation is discussed.
    Matched MeSH terms: Carcinogens
  14. Tang PL, Lee CK, Low KS, Zainal Z
    Environ Technol, 2003 Oct;24(10):1243-51.
    PMID: 14669804
    The sorption characteristics of Cr(VI) and Cu(II) by ethylenediamine modified rice hull from single and binary metal ion solutions were evaluated under various experimental conditions. Optimal Cr(VI) and Cu(II) removal from single metal ion solutions occurred at pH 2.0 and 5.5, respectively. Simultaneous removal of Cr(VI) and Cu(II) occurred at pH greater than 3.0. The sorption kinetics of Cr(VI) and Cu(II) from single and binary metal ion solutions were studied with reference to metal concentration, agitation rate and particle size. Sorption of Cr(VI) was more rapid than Cu(II). The kinetics of metal ion sorption fitted a pseudo-second order expression. The variation in the initial uptake rates was very small at an agitation rate beyond 150 rpm and sorption was generally independent of particle size. Equilibrium sorption data could be fitted into the Langmuir isotherm equation. Maximum sorption capacities of ethylenediamine modified rice hull for Cr(VI) at pH 2 and Cu(II) at pH 4 in single metal solutions were 0.45 and 0.06 mmol g(-1), respectively. This corresponds to an enhancement factor of 2.6 and 3 fold for Cr(VI) and Cu(II), respectively, compared to natural rice hull. A synergistic effect was observed for sorption of these ions in binary metal solutions.
    Matched MeSH terms: Carcinogens, Environmental/isolation & purification*; Carcinogens, Environmental/chemistry*
  15. Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Mohd Nadzir MS, Othman M, et al.
    Chemosphere, 2019 Dec;237:124451.
    PMID: 31394440 DOI: 10.1016/j.chemosphere.2019.124451
    This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ± 23.71 μg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ± 0.45 μg/m3 to 6.20 ± 3.51 μg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ± 114.57 μg/m3) in comparison to petrol station (73.08 ± 30.41 μg/m3), petrochemical industry (32.10 ± 13.13 μg/m3) and airport (25.30 ± 6.17 μg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.
    Matched MeSH terms: Carcinogens/analysis; Carcinogens/toxicity
  16. Wong YH, Goh KM, Nyam KL, Cheong LZ, Wang Y, Nehdi IA, et al.
    Sci Rep, 2020 09 15;10(1):15110.
    PMID: 32934328 DOI: 10.1038/s41598-020-72118-z
    3-Monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are heat-induced contaminants which form during oil refining process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3-MCPD and GE in fries which also involved high temperature. The content of 3-MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and different concentration of salt (NaCl). The results in our study showed that the effect was in the order of concentration of sodium chloride 
    Matched MeSH terms: Carcinogens/analysis*; Carcinogens/chemistry
  17. Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA
    Hum Exp Toxicol, 2020 May;39(5):577-595.
    PMID: 31884827 DOI: 10.1177/0960327119895570
    Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
    Matched MeSH terms: Carcinogens/pharmacokinetics; Carcinogens/toxicity*
  18. Abdull Razis AF, Konsue N, Ioannides C
    Mol Nutr Food Res, 2018 09;62(18):e1700916.
    PMID: 29288567 DOI: 10.1002/mnfr.201700916
    The potential of isothiocyanates to antagonize the carcinogenicity of structurally diverse chemicals has been established in animals. A feasible mechanism of action involves protecting DNA by reducing the availability of the genotoxic metabolites of chemical carcinogens by either inhibiting their generation and/or stimulating their detoxification. In vivo as well as in vitro studies conducted in rat/human primary hepatocytes and precision-cut tissue slices have revealed that isothiocyanates can impair cytochrome P450 activity, including the CYP1 family which is the most active in the bioactivation of carcinogens, by virtue of being mechanism-based inactivators. The aromatic phenethyl isothiocyanate is the most effective of those studied, whereas aliphatic isothiocyanates such as sulforaphane and erucin necessitate high doses in order to manifest such effects that may not always be achievable through the diet. In all systems studied, isothiocyanates are strong inducers of detoxification enzyme systems including quinone reductase, glutathione S-transferase, epoxide hydrolase, and UDP-glucuronosyl transferase. Indeed, in smokers phenethyl isothiocyanate intake increases the urinary excretion of inactive mercapturate metabolites of toxic chemicals present in tobacco. Glucosinolates, the precursors of isothiocyanates, have also the potential to upregulate detoxification enzyme systems, but their contribution to the cancer chemoprevention linked to cruciferous vegetable consumption remains to be evaluated.
    Matched MeSH terms: Carcinogens/metabolism; Carcinogens/toxicity
  19. Kuan CS, See Too WC, Few LL
    PLoS One, 2016;11(1):e0147886.
    PMID: 26807725 DOI: 10.1371/journal.pone.0147886
    Ethanolamine kinase (EK) catalyzes the phosphorylation of ethanolamine, the first step in the CDP-ethanolamine pathway for the biosynthesis of phosphatidylethanolamine (PE). Human EK exists as EK1, EK2α and EK2β isoforms, encoded by two separate genes, named ek1 and ek2. EK activity is stimulated by carcinogens and oncogenes, suggesting the involvement of EK in carcinogenesis. Currently, little is known about EK transcriptional regulation by endogenous or exogenous signals, and the ek gene promoter has never been studied.
    Matched MeSH terms: Carcinogens
  20. Lee BQ, Wan Mohamed Radzi CW, Khor SM
    J Chromatogr A, 2016 Feb 5;1432:101-10.
    PMID: 26792449 DOI: 10.1016/j.chroma.2015.12.087
    This paper reports the application of hexamethyldisilazane-trimethylsilyl trifluoromethanesulfonate (HMDS-TMSOTf) for the simultaneous silylation of 3-monochloro-1,2-propanediol (3-MCPD) and 1,3-dicholoropropanol (1,3-DCP) in solid and liquid food samples. 3-MCPD and 1,3-DCP are chloropropanols that have been established as Group 2B carcinogens in clinical testing. They can be found in heat-processed food, especially when an extended high-temperature treatment is required. However, the current AOAC detection method is time-consuming and expensive. Thus, HMDS-TMSOTf was used in this study to provide a safer, and cost-effective alternative to the HFBI method. Three important steps are involved in the quantification of 3-MCPD and 1,3-DCP: extraction, derivatization and quantification. The optimization of the derivatization process, which involved focusing on the catalyst volume, derivatization temperature, and derivatization time was performed based on the findings obtained from both the Box-Behnken modeling and a real experimental set up. With the optimized conditions, the newly developed method was used for actual food sample quantification and the results were compared with those obtained via the standard AOAC method. The developed method required less samples and reagents but it could be used to achieve lower limits of quantification (0.0043mgL(-1) for 1,3-DCP and 0.0011mgL(-1) for 3-MCPD) and detection (0.0028mgL(-1) for 1,3-DCP and 0.0008mgL(-1) for 3-MCPD). All the detected concentrations are below the maximum tolerable limit of 0.02mgL(-1). The percentage of recovery obtained from food sample analysis was between 83% and 96%. The new procedure was validated with the AOAC method and showed a comparable performance. The HMDS-TMSOTf derivatization strategy is capable of simultaneously derivatizing 1,3-DCP and 3-MCPD at room temperature, and it also serves as a rapid, sensitive, and accurate analytical method for food samples analysis.
    Matched MeSH terms: Carcinogens
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links