Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. George CF, Challoner VF, Waller DG
    Med J Malaysia, 1988 Mar;43(1):14-20.
    PMID: 3244314
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  2. Sharma PA, Maheshwari R, Tekade M, Tekade RK
    Curr Pharm Des, 2015;21(30):4465-78.
    PMID: 26354926
    The increasing prevalence and complexity of cardiovascular diseases demand innovative strategies for diagnostic and therapeutic applications to improve patient care/prognoses. Additionally, various factors constrain present cardiovascular therapies, including low aqueous drug solubility, early metabolism, short half-life and drug delivery limitations. The efficient treatment of cardiovascular diseases requires improvement of traditional drug delivery systems. This can be accomplished by using novel nanomaterial that can incorporate diverse bio-actives along with diagnostic agents in a single carrier, referred to as theranostics. This review discusses the state of the art in the applications to diagnosis and therapy of innovative, nanomaterial- based strategies such as lipid based carriers, nanocapsules, magnetic nanoparticles, gold nanoparticles, protein conjugated nanoparticles, dendrimers and carbon-based nanoformulations with a special emphasis on how they can contribute to improving the management of cardiovascular disease.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  3. Choy KW, Murugan D, Mustafa MR
    Pharmacol Res, 2018 06;132:119-129.
    PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013
    Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  4. Tan KX, Pan S, Jeevanandam J, Danquah MK
    Int J Pharm, 2019 Mar 10;558:413-425.
    PMID: 30660748 DOI: 10.1016/j.ijpharm.2019.01.023
    Cardiovascular ailments are the foremost trigger of death in the world today, including myocardial infarction and ischemic heart diseases. To date, extraordinary measures have been prescribed, from the perspectives of both conventional medical therapies and surgeries, to enforce cardiac cell regeneration post cardiac traumas, albeit with limited long-term success. The prospects of successful heart transplants are also grim, considering exorbitant costs and unavailability of suitable donors in most cases. From the perspective of cardiac revascularization, use of nanoparticles and nanoparticle mediated targeted drug delivery have garnered substantial attention, attributing to both active and passive heart targeting, with enhanced target specificity and sensitivity. This review focuses on this aspect, while outlining the progress in targeted delivery of nanomedicines in the prognosis and subsequent therapy of cardiovascular disorders, and recapitulating the benefits and intrinsic challenges associated with the incorporation of nanoparticles. This article categorically provides an overview of nanoparticle-mediated targeted delivery systems and their implications in handling cardiovascular diseases, including their intrinsic benefits and encountered procedural trials and challenges. Additionally, the solicitations of aptamers in targeted drug delivery with identical objectives, are presented. This includes a detailed appraisal on various aptamer-navigated nanoparticle targeted delivery platforms in the diagnosis and treatment of cardiovascular maladies. Despite a few impending challenges, subject to additional investigations, both nanoparticles as well as aptamers show a high degree of promise, and pose as the next generation of drug delivery vehicles, in targeted cardiovascular therapy.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  5. Sousa Fialho MDL, Abd Jamil AH, Stannard GA, Heather LC
    Biochim Biophys Acta Mol Basis Dis, 2019 04 01;1865(4):831-843.
    PMID: 30266651 DOI: 10.1016/j.bbadis.2018.09.024
    Cardiovascular disease (CVD) accounts for the largest number of deaths worldwide, necessitating the development of novel treatments and prevention strategies. Given the huge energy demands placed on the heart, it is not surprising that changes in energy metabolism play a key role in the development of cardiac dysfunction in CVD. A reduction in oxygen delivery to the heart, hypoxia, is sensed and responded to by the hypoxia-inducible factor (HIF) and its family of proteins, by regulating the oxygen-dependent signalling cascade and subsequent response. Hypoxia is one of the main drivers of metabolic change in ischaemic disease and myocardial infarction, and we therefore suggest that HIF may be an attractive therapeutic target. In this review, we assess cardiac energy metabolism in health and disease, and how these can be regulated by HIF-1α activation. We then present an overview of research in the field of hypoxia-mimetic drugs recently developed in other treatment fields, which provide insight into the potential of systemic HIF-1α activation therapy for treating the heart.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy
  6. Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A
    ACS Nano, 2020 03 24;14(3):2585-2627.
    PMID: 32031781 DOI: 10.1021/acsnano.9b08133
    Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy. However, nanomaterial applications in nanotheranostics are still in its infancy. This is due to the fact that each disease has a particular microenvironment with well-defined characteristics, which promotes deeper selection criteria of nanomaterials to meet the disease needs. In this review, we have outlined how nanomaterials are designed and tailored for nanotheranostics of cancer and other diseases such as neurodegenerative, autoimmune (particularly on rheumatoid arthritis), and cardiovascular diseases. The penetrability and retention of a nanomaterial in the biological system, the therapeutic strategy used, and the imaging mode selected are some of the aspects discussed for each disease. The specific properties of the nanomaterials in terms of feasibility, physicochemical challenges, progress in clinical trials, its toxicity, and their future application on translational medicine are addressed. Our review meticulously and critically examines the applications of nanotheranostics with various nanomaterials, including graphene, across several diseases, offering a broader perspective of this emerging field.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  7. Razali NNM, Ng CT, Fong LY
    Planta Med, 2019 Nov;85(16):1203-1215.
    PMID: 31539918 DOI: 10.1055/a-1008-6138
    Centella asiatica, a triterpene-rich medicinal herb, is traditionally used to treat various types of diseases including neurological, dermatological, and metabolic diseases. A few articles have previously reviewed a broad range of pharmacological activities of C. asiatica, but none of these reviews focuses on the use of C. asiatica in cardiovascular diseases. This review aims to summarize recent findings on protective effects of C. asiatica and its active constituents (asiatic acid, asiaticoside, madecassic acid, and madecassoside) in cardiovascular diseases. In addition, their beneficial effects on conditions associated with cardiovascular diseases were also reviewed. Articles were retrieved from electronic databases such as PubMed and Google Scholar using keywords "Centella asiatica," "asiatic acid," "asiaticoside," "madecassic acid," and "madecassoside." The articles published between 2004 and 2018 that are related to the aforementioned topics were selected. A few clinical studies published beyond this period were also included. The results showed that C. asiatica and its active compounds possess potential therapeutic effects in cardiovascular diseases and cardiovascular disease-related conditions, as evidenced by numerous in silico, in vitro, in vivo, and clinical studies. C. asiatica and its triterpenes have been reported to exhibit cardioprotective, anti-atherosclerotic, antihypertensive, antihyperlipidemic, antidiabetic, antioxidant, and anti-inflammatory activities. In conclusion, more clinical and pharmacokinetic studies are needed to support the use of C. asiatica and its triterpenes as therapeutic agents for cardiovascular diseases. Besides, elucidation of the molecular pathways modulated by C. asiatica and its active constituents will help to understand the mechanisms underlying the cardioprotective action of C. asiatica.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  8. Liew SM, Doust J, Glasziou P
    Heart, 2011 May;97(9):689-97.
    PMID: 21474616 DOI: 10.1136/hrt.2010.220442
    OBJECTIVE: To compare the strengths and limitations of cardiovascular risk scores available for clinicians in assessing the global (absolute) risk of cardiovascular disease.
    DESIGN: Review of cardiovascular risk scores.
    DATA SOURCES: Medline (1966 to May 2009) using a mixture of MeSH terms and free text for the keywords 'cardiovascular', 'risk prediction' and 'cohort studies'.
    ELIGIBILITY CRITERIA FOR SELECTING STUDIES: A study was eligible if it fulfilled the following criteria: (1) it was a cohort study of adults in the general population with no prior history of cardiovascular disease and not restricted by a disease condition; (2) the primary objective was the development of a cardiovascular risk score/equation that predicted an individual's absolute cardiovascular risk in 5-10 years; (3) the score could be used by a clinician to calculate the risk for an individual patient.
    RESULTS: 21 risk scores from 18 papers were identified from 3536 papers. Cohort size ranged from 4372 participants (SHS) to 1591209 records (QRISK2). More than half of the cardiovascular risk scores (11) were from studies with recruitment starting after 1980. Definitions and methods for measuring risk predictors and outcomes varied widely between scores. Fourteen cardiovascular risk scores reported data on prior treatment, but this was mainly limited to antihypertensive treatment. Only two studies reported prior use of lipid-lowering agents. None reported on prior use of platelet inhibitors or data on treatment drop-ins.
    CONCLUSIONS: The use of risk-factor-modifying drugs-for example, statins-and disease-modifying medication-for example, platelet inhibitors-was not accounted for. In addition, none of the risk scores addressed the effect of treatment drop-ins-that is, treatment started during the study period. Ideally, a risk score should be derived from a population free from treatment. The lack of accounting for treatment effect and the wide variation in study characteristics, predictors and outcomes causes difficulties in the use of cardiovascular risk scores for clinical treatment decision.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy
  9. Al-Junid SM, Ezat WP, Surianti S
    Med J Malaysia, 2007 Mar;62(1):59-65.
    PMID: 17682574 MyJurnal
    A prevalence study was conducted, measuring drug cost and prescribing patterns of clinicians treating cardiovascular patients in UKM Hospital (HUKM). One Hundred and thirty-five patients' case-notes were selected from the Case-Mix database of HUKM. The average and median number of drugs prescribed per patient was 7.56 (+/- 3.37) and 7.0 (+/- 3) respectively. Generic drug prescription rate was still low (45.2%). Significant relationship was observed between generic drug prescriptions with age of patients, types of wards and different levels of clinicians' training. Younger patients, admitted to Coronary Care Unit (CCU) and Cardiology Rehabilitation Ward (CRW) were more likely to be prescribed with branded drugs. Lower generic drugs prescription and higher cost of drugs were mostly practised by Consultants. CCU and CRW wards were the only predictor to having low generic drugs prescriptions. Ninety-nine percent of the total RM28,879.25 drug cost was used to purchase branded drugs. Mean drug cost for a patient is RM213.92 (+/- RM333.36) and median cost is RM102.46 (+/- RM240.51). Higher drug cost and its' predictors were patients with severity level II and III, length of stay of > or = 6 days, number of drugs types of > or = 7, generic drugs prescription rate < 50% and patients admitted in CCU and CRW wards. This study is important for short and long-term decision-making, controlling of providers behaviour and resources.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  10. Ong HT, Ch'ng SL, Masduki A, Chandrasekharan N
    Med J Malaysia, 1989 Dec;44(4):296-301.
    PMID: 2520037
    A prospective study to correlate clinical digoxin toxicity with serum digoxin levels was carried out in 67 patients of whom 24 were clinically toxic and 43 were asymptomatic. The patients were clinically diagnosed to be toxic based on typical cardiac arrhythmias (n = 11) or non-cardiac symptoms (n = 13). Blood samples were collected at least six hours after the last digoxin dose and the sera assayed for digoxin using a radioimmunoassay method. The mean serum digoxin level in the toxic group (x1 = 2.09 +/- 1.28 ng/ml) was significantly higher than in the non-toxic group (x2 = 1.20 +/- 0.75 ng/ml), p less than 0.01. All the non-toxic patients had serum digoxin levels below 3 ng/ml. However, there was a considerable overlap of serum digoxin levels between the two groups of patients. Serum level cannot be the sole criterion in diagnosing digoxin toxicity. Nevertheless, raised serum digoxin levels especially above 3 ng/ml, in the presence of suggestive clinical features is strongly suggestive of toxicity.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy
  11. Med J Malaysia, 1988 Sep;43(3):267-8.
    PMID: 3241590
    Reproduced from Quarterly Review, National Dairy Council Nutrition Services, London (NIS/9/88)
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  12. Khazdouz M, Djalalinia S, Sarrafi Zadeh S, Hasani M, Shidfar F, Ataie-Jafari A, et al.
    Biol Trace Elem Res, 2020 Jun;195(2):373-398.
    PMID: 31494808 DOI: 10.1007/s12011-019-01870-9
    The prevalence of cardiometabolic risk factors has been increasing worldwide. The results of reported studies on the effects of zinc supplementation on cardiometabolic risk factors are unequivocal. This systematic review and meta-analysis of randomized controlled trials was conducted to evaluate the effects of zinc supplementation on cardiometabolic risk factors. A systematic search was conducted through international databases (PubMed/Medline, Institute of Scientific Information, and Scopus) until December 2018 to include all randomized controlled trials (RCT), quasi-RCT, and controlled clinical trials which assessed the effect of zinc supplementation on cardiometabolic risk factors including lipid profile, glycemic indices, blood pressure, and anthropometric indices. Random- or fixed-effects meta-analysis method was used to estimate the standardized mean difference (SMD) and 95% confidence interval (CI). A total of 20 studies were included in the meta-analysis, which included a total of 1141 participants in the intervention group. Meta-analysis showed that zinc supplementation significantly decreased plasma levels of triglyceride (SMD - 0.66, 95% CI - 1.27, - 0.06), very-low-density lipoprotein (SMD - 1.59, 95% CI - 2.86, - 0.31), and total cholesterol (SMD - 0.65, 95% CI - 1.15, - 0.15). Similarly, zinc supplementation significantly decreased fasting blood glucose (SMD - 0.52, 95% CI - 0.96, - 0.07) and HbA1c (SMD - 0.64, 95% CI - 1.27, - 0.02). The effects of zinc supplementation on blood pressure and anthropometric indices were not statistically significant (P > 0.05). Zinc supplements had beneficial effects on glycemic indices and lipid profile. Thus, it appeared that zinc supplementation might be associated with a decrease in cardiometabolic risk factors contributing to a reduction in risk of atherosclerosis.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  13. Vellasamy S, Murugan D, Abas R, Alias A, Seng WY, Woon CK
    Molecules, 2021 Aug 17;26(16).
    PMID: 34443563 DOI: 10.3390/molecules26164976
    Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  14. Saffian SM, Duffull SB, Wright D
    Clin. Pharmacol. Ther., 2017 Aug;102(2):297-304.
    PMID: 28160278 DOI: 10.1002/cpt.649
    There is preliminary evidence to suggest that some published warfarin dosing algorithms produce biased maintenance dose predictions in patients who require higher than average doses. We conducted a meta-analysis of warfarin dosing algorithms to determine if there exists a systematic under- or overprediction of dose requirements for patients requiring ≥7 mg/day across published algorithms. Medline and Embase databases were searched up to September 2015. We quantified the proportion of over- and underpredicted doses in patients whose observed maintenance dose was ≥7 mg/day. The meta-analysis included 47 evaluations of 22 different warfarin dosing algorithms from 16 studies. The meta-analysis included data from 1,492 patients who required warfarin doses of ≥7 mg/day. All 22 algorithms were found to underpredict warfarin dosing requirements in patients who required ≥7 mg/day by an average of 2.3 mg/day with a pooled estimate of underpredicted doses of 92.3% (95% confidence interval 90.3-94.1, I(2) = 24%).
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  15. Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M
    Pharmacol Ther, 2017 Dec;180:113-128.
    PMID: 28648830 DOI: 10.1016/j.pharmthera.2017.06.010
    Purinergic signaling, mediated mainly by G protein-coupled P2Y receptors (P2YRs), is now attracting attention as a new therapeutic target for preventing or treating cardiovascular diseases. Observations using mice with genetically modified P2YRs and/or treated with a pharmacological P2YR inhibitor have helped us understand the physiological and pathological significance of P2YRs in the cardiovascular system. P2YR-mediated biological functions are predominantly activated by mononucleotides released from non-adrenergic, non-cholinergic nerve endings or non-secretory tissues in response to physical stress or cell injury, though recent studies have suggested the occurrence of ligand-independent P2YR function through receptor-receptor interactions (oligomerization) in several biological processes. In this review, we introduce the functions of P2YRs and possible dimerization with G protein-coupled receptors (GPCRs) in the cardiovascular system. We focus especially on the crosstalk between uridine nucleotide-responsive P2Y6R and angiotensin (Ang) II type1 receptor (AT1R) signaling, and introduce our recent finding that the P2Y6R antagonist MRS2578 interrupts heterodimerization between P2Y6R and AT1R, thereby reducing the risk of AT1R-stimulated hypertension in mice. These results strongly suggest that targeting P2Y6R oligomerization could be an effective new strategy to reduce the risk of cardiovascular diseases.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  16. Thanikachalam PV, Ramamurthy S, Wong ZW, Koo BJ, Wong JY, Abdullah MF, et al.
    Drug Discov Today, 2018 Mar;23(3):460-480.
    PMID: 29107764 DOI: 10.1016/j.drudis.2017.10.020
    MicroRNAs (miRNAs) are small, noncoding RNAs regulating gene expression at the post-translational level. miRNA-based therapeutic agents are important because of the functionality of miRNAs in regulating lipid and glucose metabolism and their role in the pathogenesis of metabolic disorders such as diabetes and obesity, where dysregulation leads to disease; they are also important in angiogenesis. miRNAs additionally serve as biomarkers in the diagnosis, prognosis and risk assessment of disease and in monitoring the response to treatment. Here, we provide a brief overview of progress in miRNA-based therapeutics in the preclinical and clinical setting and highlight the novel outcomes and opportunities in the diagnosis and treatment of metabolic conditions. In addition, we present the role of miRNAs in stem cell therapy which could have great potential in regenerative medicine.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  17. Ong HT
    Singapore Med J, 2008 Aug;49(8):599-605; quiz 606.
    PMID: 18756340
    The comparative anti-hypertensive drug trials conducted to assess their cardiovascular protective efficacy actually produce compatible, not conflicting, results. In the last decade, there were 13 major comparative hypertension drug trials with the cardiovascular primary outcome being statistically equivalent in 11 of these 13 trials, involving over 90 percent of the randomised 168,593 patients. Where secondary outcomes favour a drug in these trials, that arm has a significantly lower treated blood pressure as in LIFE, VALUE, ASCOT and ALLHAT. Controversy occurs in seeking to attribute the benefit to drug effect; if the benefit is attributed to the lower achieved blood pressure, then the trials become consistent. The safety and value of diuretics, beta-blockers, calcium-blockers, angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers in reducing blood pressure, and in reducing clinical cardiovascular outcomes, is now clearly established. Overall, the importance of tight blood pressure control in reducing cardiovascular outcomes must be emphasised. Physicians should concentrate on achieving good blood pressure control, which often requires a combination of several antihypertensive drugs.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  18. Ong SB, Kalkhoran SB, Cabrera-Fuentes HA, Hausenloy DJ
    Eur J Pharmacol, 2015 Sep 15;763(Pt A):104-14.
    PMID: 25987420 DOI: 10.1016/j.ejphar.2015.04.056
    The past decade has witnessed a number of exciting developments in the field of mitochondrial dynamics - a phenomenon in which changes in mitochondrial shape and movement impact on cellular physiology and pathology. By undergoing fusion and fission, mitochondria are able to change their morphology between elongated interconnected networks and discrete fragmented structures, respectively. The cardiac mitochondria, in particular, have garnered much interest due to their unique spatial arrangement in the adult cardiomyocyte, and the multiple roles they play in cell death and survival. In this article, we review the role of the mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
  19. Ibrahim N', Fairus S, Mohamed IN
    Nutrients, 2020 Jul 10;12(7).
    PMID: 32664390 DOI: 10.3390/nu12072055
    Cardiovascular disease (CVD) is globally known as the number one cause of death with hyperlipidemia as a strong risk factor for CVD. The initiation of drug treatment will be recommended if lifestyle modification fails. However, medicines currently used for improving cholesterol and low-density lipoprotein cholesterols (LDL-C) levels have been associated with various side effects. Thus, alternative treatment with fewer or no side effects needs to be explored. A potential agent, oil palm phenolics (OPP) recovered from the aqueous waste of oil palm milling process contains numerous water-soluble phenolic compounds. It has been postulated that OPP has shown cardioprotective effects via several mechanisms such as cholesterol biosynthesis pathway, antioxidant and anti-inflammatory properties. This review aims to summarize the current evidence explicating the actions of OPP in cardiovascular health and the mechanisms that maybe involved for the cardioprotective effects.
    Matched MeSH terms: Cardiovascular Diseases/drug therapy
  20. Kow CS, Thiruchelvam K, Hasan SS
    Expert Rev Cardiovasc Ther, 2020 Aug;18(8):475-485.
    PMID: 32700573 DOI: 10.1080/14779072.2020.1797492
    INTRODUCTION: Cardiovascular diseases (CVDs) are among the most frequently identified comorbidities in hospitalized patients with COVID-19. Patients with CV comorbidities are typically prescribed with long-term medications. We reviewed the management of co-medications prescribed for CVDs among hospitalized COVID-19 patients.

    AREAS COVERED: There is no specific contraindication or caution related to COVID-19 on the use of antihypertensives unless patients develop severe hypotension from septic shock where all antihypertensives should be discontinued or severe hyperkalemia in which continuation of renin-angiotensin system inhibitors is not desired. The continuation of antiplatelet or statin is not desired when severe thrombocytopenia or severe transminitis develop, respectively. Patients with atrial fibrillation receiving oral anticoagulants, particularly those who are critically ill, should be considered for substitution to parenteral anticoagulants.

    EXPERT OPINION: An individualized approach to medication management among hospitalized COVID-19 patients with concurrent CVDs would seem prudent with attention paid to changes in clinical conditions and medications intended for COVID-19. The decision to modify prescribed long-term CV medications should be entailed by close follow-up to check if a revision on the decision is needed, with resumption of any long-term CV medication before discharge if it is discontinued during hospitalization for COVID-19, to ensure continuity of care.

    Matched MeSH terms: Cardiovascular Diseases/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links