Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Maqbool M, Vidyadaran S, George E, Ramasamy R
    Med J Malaysia, 2011 Oct;66(4):296-9.
    PMID: 22299545 MyJurnal
    Functional analysis of neutrophils requires isolation of these cells in the laboratory. Current isolation procedures are time consuming and can potentially activate the resting neutrophils. Thus, in this present study, we have optimised an existing laboratory protocol for human neutrophil isolation from peripheral blood. Twenty ml of blood samples were subjected to optimised density gradient separation and dextran sedimentation to obtain a pure population of neutrophils. The efficacy of the optimised manual post isolation of neutrophils was compared with pre isolation count performed by an automated haematology analyzer. The recovery of neutrophils via our optimised methods was 65.5% in comparison with neutrophils counts at pre-isolation. The morphological analysis of isolated neutrophils indicated the purity level more than 95% using Leishman staining. Our optimised laboratory procedures for neutrophils isolation successfully harvested neutrophils with good viability, purity and post recovery yield. This procedure provides an ideal platform to separate neutrophils for in vitro studies.
    Matched MeSH terms: Cell Separation/methods*
  2. Lim LH, Ton SH, Cheong SK
    Malays J Pathol, 1990 Jun;12(1):39-41.
    PMID: 2090888
    The 'Dextran' and the 'Buffy-coat' methods for isolation of human leucocytes for DNA extraction were compared on the basis of DNA yield from the same amounts (10 ml) of blood. Human leucocytes from a total of 11 samples were isolated using both methods for each sample after which DNA was extracted. Extracted DNA samples were treated with ribonucleases and proteinase K after which the yields were quantitated by measuring absorbance at 260 nm. The 'Buffy-coat' method yielded a mean concentration of DNA of 476.7 micrograms/ml (range: 212 to 700 micrograms/ml) while the 'Dextran' method yielded 188.4 micrograms/ml (range: 64 to 340 micrograms/ml). The difference was confirmed by subjecting the extracted DNA samples to agarose gel electrophoresis.
    Matched MeSH terms: Cell Separation/methods*
  3. Moriya S, Ogawa S, Parhar IS
    Biochem Biophys Res Commun, 2013 Jun 14;435(4):562-6.
    PMID: 23669040 DOI: 10.1016/j.bbrc.2013.05.004
    Most vertebrates possess at least two gonadotropin-releasing hormone (GnRH) neuron types. To understand the physiological significance of the multiple GnRH systems in the brain, we examined three GnRH neuron type-specific transcriptomes using single-cell microarray analyses in the medaka (Oryzias latipes). A microarray profile of the three GnRH neuron types revealed five genes that are uniquely expressed in specific GnRH neuron types. GnRH1 neurons expressed three genes that are homologous to functionally characterised genes, GnRH2 neurons uniquely expressed one unnamed gene, and GnRH3 neurons uniquely expressed one known gene. These genes may be involved in the modulation or maintenance of each GnRH neuron type.
    Matched MeSH terms: Cell Separation/methods
  4. Halim NHA, Zakaria N, Satar NA, Yahaya BH
    Methods Mol Biol, 2016;1516:371-388.
    PMID: 27032945 DOI: 10.1007/7651_2016_326
    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.
    Matched MeSH terms: Cell Separation/methods*
  5. Low WS, Wan Abas WA
    Biomed Res Int, 2015;2015:239362.
    PMID: 25977918 DOI: 10.1155/2015/239362
    Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies.
    Matched MeSH terms: Cell Separation/methods*
  6. Higuchi A, Wang CT, Ling QD, Lee HH, Kumar SS, Chang Y, et al.
    Sci Rep, 2015;5:10217.
    PMID: 25970301 DOI: 10.1038/srep10217
    Human adipose-derived stem cells (hADSCs) exhibit heterogeneous characteristics, indicating various genotypes and differentiation abilities. The isolated hADSCs can possess different purity levels and divergent properties depending on the purification methods used. We developed a hybrid-membrane migration method that purifies hADSCs from a fat tissue solution with extremely high purity and pluripotency. A primary fat-tissue solution was permeated through the porous membranes with a pore size from 8 to 25 μm, and the membranes were incubated in cell culture medium for 15-18 days. The hADSCs that migrated from the membranes contained an extremely high percentage (e.g., >98%) of cells positive for mesenchymal stem cell markers and showed almost one order of magnitude higher expression of some pluripotency genes (Oct4, Sox2, Klf4 and Nanog) compared with cells isolated using the conventional culture method.
    Matched MeSH terms: Cell Separation/methods*
  7. Tay SP, Cheong SK, Hamidah NH, Ainoon O
    Malays J Pathol, 1998 Dec;20(2):91-4.
    PMID: 10879268
    A study was undertaken to evaluate the ability of flow cytometric analysis of intracellular myeloperoxidase (MPO) in differentiating populations of lymphocytes (L), monocytes (M) and granulocytes (G), by means of lysed whole blood method. Anticoagulated blood from 23 normal individuals was lysed with FACS lysing solution and permeabilized with FACS permeabilizing solution before subjected to direct immunofluorescence staining. The geometric means of the fluorescence intensity were measured using FACSCalibur flow cytometer (Becton Dickinson). Populations of L, M and G were gated based on their light scatter characteristics and expression of CD14 and CD45. Then, the fluorescence intensity of MPO expression was studied in these individual cell populations. The results showed that fluorescence intensity of MPO was the strongest in G and weakest in L, whereas M showed intermediate fluorescence intensity. Our findings reveal that discrimination of these three cell types is achievable based upon the sole expression of intracellular MPO.
    Matched MeSH terms: Cell Separation/methods*
  8. Wee AS, Lim CK, Merican AM, Ahmad TS, Kamarul T
    In Vitro Cell Dev Biol Anim, 2013 Jun;49(6):424-32.
    PMID: 23708918 DOI: 10.1007/s11626-013-9626-0
    In vitro cellular proliferation and the ability to undergo multilineage differentiation make bone marrow-derived multipotent stromal cells (MSCs) potentially useful for clinical applications. Several methods have been described to isolate a homogenous bone marrow-derived MSCs population; however, none has been proven most effective, mainly due to their effects on proliferation and differentiation capability of the isolated cells. It is hypothesized that our newly established total cell pooling method may provide a better alternative as compared to the standard isolation method (density gradient centrifugation method). For the total cell pooling method, MSCs were isolated from rabbit bone marrow and were subsequently cultured in the growth medium without further separation as in the standard isolation method. The total cell pooling method was 65 min faster than the standard isolation method in completing cell isolation. Nevertheless, both methods did not differ significantly in the number of primary viable cells and population doubling time in the cultures (p > 0.05). The isolated cells from both methods expressed CD29 and CD44 markers, but not CD45 markers. Furthermore, they displayed multilineage differentiation characteristics of chondroblasts, osteoblasts, and adipocytes. In conclusion, both methods provide similar efficiency in the isolation of rabbit bone marrow-derived MSCs; however, the total cell pooling method is technically simpler and more cost effective than the standard isolation method.
    Matched MeSH terms: Cell Separation/methods*
  9. Jose S, Tan SW, Tong CK, Vidyadaran S
    Cell Biol Int, 2015 Dec;39(12):1355-63.
    PMID: 26194799 DOI: 10.1002/cbin.10516
    Microglia are resident macrophages of the central nervous system (CNS). Apart from playing vital roles as sentinel cells, they are crucial in physiological processes such as synaptic pruning during brain development. CNS disorders require an understanding of the contribution of each cellular compartment to the pathogenesis. Elucidating the role of microglia in disease development and progression in the intricate CNS environment is technically challenging and requires the establishment of reliable, reproducible techniques to isolate and culture microglia. A number of different protocols have been developed for isolation of neonatal microglia and here we compare two widely used methods, namely, mild trypsinization and EasySep® magnetic separation. EasySep® magnetic separation provided higher microglia yield, and flow cytometric evaluation of CD11b and F4/80 markers revealed that EasySep® separation method also produced significantly higher purity compared to mild trypsinization. Microglia isolated using EasySep® separation method were functional, as demonstrated by the generation of nitric oxide, IL-6, TNF-α, and MCP-1 in response to lipopolysaccharide stimulation. In summary, this study has revealed that magnetic separation is superior to mild trypsinization in terms of yield and purity of microglia.
    Matched MeSH terms: Cell Separation/methods
  10. Lin HR, Heish CW, Liu CH, Muduli S, Li HF, Higuchi A, et al.
    Sci Rep, 2017 01 10;7:40069.
    PMID: 28071738 DOI: 10.1038/srep40069
    Human adipose-derived stem cells (hADSCs) are easily isolated from fat tissue without ethical concerns, but differ in purity, pluripotency, differentiation ability, and stem cell marker expression, depending on the isolation method. We isolated hADSCs from a primary fat tissue solution using: (1) conventional culture, (2) a membrane filtration method, (3) a membrane migration method where the primary cell solution was permeated through membranes, adhered hADSCs were cultured, and hADSCs migrated out from the membranes. Expression of mesenchymal stem cell markers and pluripotency genes, and osteogenic differentiation were compared for hADSCs isolated by different methods using nylon mesh filter membranes with pore sizes ranging from 11 to 80 μm. hADSCs isolated by the membrane migration method had the highest MSC surface marker expression and efficient differentiation into osteoblasts. Osteogenic differentiation ability of hADSCs and MSC surface marker expression were correlated, but osteogenic differentiation ability and pluripotent gene expression were not.
    Matched MeSH terms: Cell Separation/methods*
  11. Tao ZY, Liu WP, Dong J, Feng XX, Yao DW, Lv QL, et al.
    Trop Biomed, 2020 Dec 01;37(4):911-918.
    PMID: 33612745 DOI: 10.47665/tb.37.4.911
    The purification of parasite-infected erythrocytes from whole blood containing leucocytes is crucial for many downstream genetic and molecular assays in parasitology. Current methodologies to achieve this are often costly and time consuming. Here, we demonstrate the successful application of a cheap and simple Non-Woven Fabric (NWF) filter for the purification of parasitized red blood cells from whole blood. NWF filtration was applied to the malaria-parasitized blood of three strains of mice, and one strain of rat, and to Babesia gibsoni parasitized dog blood. Before and after filtration, the white blood cell (WBC) removal rates and red blood cell (RBC) recovery rates were measured. After NWF filter treatment of rodent malaria-infected blood, the WBC removal rates and RBC recovery rates were, for Kunming mice: 99.51%±0.30% and 86.12%±8.37%; for BALB/C mice: 99.61%±0.15% and 80.74%±7.11%; for C57 mice: 99.71%±0.12% and 84.87%±3.83%; for Sprague-Dawley rats: 99.93%±0.03% and 83.30%±2.96%. Microscopy showed WBCs were efficiently removed from infected dog blood samples, and there was no obvious morphological change of B. gibsoni parasites. NWF filters efficiently remove leukocytes from malaria parasite-infected mouse and rat blood, and are also suitable for filtration of B. gibsoni-infected dog blood.
    Matched MeSH terms: Cell Separation/methods*
  12. Reshak AH, Shahimin MM, Buang F
    Prog Biophys Mol Biol, 2013 Nov;113(2):295-8.
    PMID: 24080186 DOI: 10.1016/j.pbiomolbio.2013.09.001
    Mammalian adipose tissue derived stem cells (AT-SC) have a tremendous potential in regenerative medicine for tissue engineering and somatic nuclear transfer (SNT). The isolation methods of human and bovine adipose tissue derived stem cells are compared in this paper to determine the feasibility and optimum method of isolation. The optimum isolation method will reduce the processing time, efforts and money as isolation is the first crucial and important step in stem cells research. Human abdominal subcutaneous adipose tissue and bovine abdominal subcutaneous adipose tissue are digested in three collagenase type 1 concentration 0.075%, 0.3% and 0.6% agitated at 1 h and 2 h under 37 °C in 5% CO2 incubator. The cultures are then morphologically characterised. Human adipose tissue stem cells are found to be best isolated using abdominal subcutaneous depot, using 0.075% collagenase type 1 agitated at 1 h under 37 °C in CO2 incubator. While bovine adipose tissue derived stem cells are best isolated using abdominal subcutaneous depot, using 0.6% collagenase type 1 agitated at 2 h under 37 °C in CO2 incubator.
    Matched MeSH terms: Cell Separation/methods*
  13. Kamuri MF, Zainal Abidin Z, Yaacob MH, Hamidon MN, Md Yunus NA, Kamarudin S
    Biosensors (Basel), 2019 Mar 14;9(1).
    PMID: 30875829 DOI: 10.3390/bios9010040
    This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2⁻24 s and a flow rate range of 1.2⁻9.6 μ L min - 1 . The frequency and voltage were set to a constant value of 1 M Hz and 14 V pk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 μ L min - 1 at a constant frequency, voltage, and a low conductivity.
    Matched MeSH terms: Cell Separation/methods*
  14. Yahya WN, Kadri NA, Ibrahim F
    Sensors (Basel), 2014 Jul 02;14(7):11714-34.
    PMID: 24991941 DOI: 10.3390/s140711714
    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.
    Matched MeSH terms: Cell Separation/methods*
  15. Rasouli M, Abbasi S, Sarsaifi K, Hani H, Ahmad Z, Omar AR
    Appl Biochem Biotechnol, 2014 Jan;172(1):394-404.
    PMID: 24081707 DOI: 10.1007/s12010-013-0514-6
    Enteroendocrine cells are the largest population of hormone-producing cells in the body and play important roles in many aspects of body functions. The enteroendocrine cell population is divided into different subpopulations that secrete different hormones and peptides. Characterization of each subpopulation is particularly useful for analyzing the cellular mechanisms responsible for specific cell types. Therefore, the necessity of a pure cell line for a specific study purpose was the important motivation for the separation of cell lines for each subpopulation of enteroendocrine cells. The present research introduces a method for the isolation of L-cells, one of the important subpopulations of enteroendocrine cells. The antibiotic selection method was conducted in order to isolate the L-cells from a heterogonous population of intestinal cell line. In this method, a neomycin resistance gene (as selected marker) was expressed under the control of a specific promoter of L-cells. After transfection of manipulated plasmid, only the cells which determine the specific promoter and express neomycin resistance protein would be able to survive under Geneticin antibiotic treatment condition. In order to confirm that the isolated cells were L-cells, reverse transcriptase polymerase chain reaction (PCR) and quantitative PCR assays were performed. Based on the results, the isolated cells were pure L-cells that could be able to express specific mRNA of L-cells efficiently. This technique provides a unique method for the isolation and purification of any cell line. The purified isolated L-cells by this method can be used for future studies and for analyzing cellular mechanisms that involve L-cells' functions.
    Matched MeSH terms: Cell Separation/methods*
  16. Hani H, Ibrahim TA, Othman AM, Lila MA, bt Allaudin ZN
    Xenotransplantation, 2010 12 17;17(6):469-80.
    PMID: 21158948 DOI: 10.1111/j.1399-3089.2010.00616.x
    BACKGROUND: Insufficient availability of human donors makes the search for alternative source of islet cells mandatory for future developments in pancreatic transplantation. The present study investigates the potential of caprine as an alternative source of pancreatic islets. The objectives of the study were to optimize techniques for caprine islet isolation and purification for culture establishment, and to subsequently assess their viable and functional potential.

    METHODS: Caprine pancreatic tissues were collected from a local slaughterhouse and prior transported to the laboratory by maintaining the cold chain. Islets were obtained by a collagenase-based digestion and optimized isolation technique. Islet cell purity and viability were determined by dithizone and trypan blue staining, respectively. Islet clusters of different sizes were positively identified by staining methods and demonstrated 90% viability in the culture system. Following static incubation, an in vitro insulin secretion assay was carried out and analyzed by ELISA.

    RESULTS: The islets remained satisfactorily viable for 5 days in the culture system following regular media changes. The current study has successfully optimized the isolation, purification and culture maintenance of caprine islets.

    CONCLUSION: The successful yield, viability and functionality of islets isolated from the optimized protocol provide promising potential as an alternative source of islets for diabetes and transplantation researches.

    Matched MeSH terms: Cell Separation/methods*
  17. Ng AM, Kojima K, Kodoma S, Ruszymah BH, Aminuddin BS, Vacanti AC
    Med J Malaysia, 2008 Jul;63 Suppl A:121-2.
    PMID: 19025015
    Bone marrow derived progenitor cells have been widely studied for its multipotent property and have proofed to be an important resource in regenerative medicine. However, the propagation of murine bone marrow appeared to be a great challenge as compared to other mammalian species. In this study, various isolation techniques and the plasticity of the isolated cells were evaluated. Our result shows that magnetic sorting technique yielded the most viable cells and displayed wider differentiation capacity.
    Matched MeSH terms: Cell Separation/methods*
  18. Farea M, Halim AS, Abdullah NA, Lim CK, Mokhtar KI, Berahim Z, et al.
    Int J Mol Sci, 2013;14(6):11157-70.
    PMID: 23712356 DOI: 10.3390/ijms140611157
    Hertwig's epithelial root sheath (HERS) cells play a pivotal role during root formation of the tooth and are able to form cementum-like tissue. The aim of the present study was to establish a HERS cell line for molecular and biochemical studies using a selective digestion method. Selective digestion was performed by the application of trypsin-EDTA for 2 min, which led to the detachment of fibroblast-like-cells, with the rounded cells attached to the culture plate. The HERS cells displayed a typical cuboidal/squamous-shaped appearance. Characterization of the HERS cells using immunofluorescence staining and flow cytometry analysis showed that these cells expressed pan-cytokeratin, E-cadherin, and p63 as epithelial markers. Moreover, RT-PCR confirmed that these cells expressed epithelial-related genes, such as cytokeratin 14, E-cadherin, and ΔNp63. Additionally, HERS cells showed low expression of CD44 and CD105 with absence of CD34 and amelogenin expressions. In conclusion, HERS cells have been successfully isolated using a selective digestion method, thus enabling future studies on the roles of these cells in the formation of cementum-like tissue in vitro.
    Matched MeSH terms: Cell Separation/methods*
  19. Safwani WK, Makpol S, Sathapan S, Chua KH
    Cell Tissue Bank, 2013 Jun;14(2):289-301.
    PMID: 22476937 DOI: 10.1007/s10561-012-9309-1
    Adipose tissue is a source of multipotent stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic and adipogenic cells. Most studies on human adipose-derived stem cells (ASCs) have been carried out at the early passages. For clinical usage, ASCs need to be expanded in vitro for a period of time to get sufficient cells for transplantation into patients. However, the impact of long-term culture on ASCs molecular characteristics has not been established yet. Several studies have also shown that osteogenic and adipogenic cells have the ability to switch pathways during in vitro culture as they share the same progenitor cells. This data is important to ensure their functionality and efficacy before being used clinically in the treatment of bone diseases. Therefore, we aim to investigate the effect of long-term culture on the adipogenic, stemness and osteogenic genes expression during osteogenic induction of ASCs. In this study, the molecular characteristics of ASCs during osteogenic induction in long-term culture was analysed by observing their morphological changes during induction, analysis of cell mineralization using Alizarin Red staining and gene expression changes using quantitative RT-PCR. Morphologically, cell mineralization at P20 was less compared to P5, P10 and P15. Adipogenesis was not observed as negative lipid droplets formation was recorded during induction. The quantitative PCR data showed that adipogenic genes expression e.g. LPL and AP2 decreased but PPAR-γ was increased after osteogenic induction in long-term culture. Most stemness genes decreased at P5 and P10 but showed no significant changes at P15 and P20. While most osteogenic genes increased after osteogenic induction at all passages. When compared among passages after induction, Runx showed a significant increased at P20 while BSP, OSP and ALP decreased at later passage (P15 and P20). During long-term culture, ASCs were only able to differentiate into immature osteogenic cells.
    Matched MeSH terms: Cell Separation/methods
  20. Hani H, Allaudin ZN, Tengku Ibrahim TA, Mohd-Lila MA, Sarsaifi K, Camalxaman SN, et al.
    In Vitro Cell Dev Biol Anim, 2015 Feb;51(2):113-20.
    PMID: 25303943 DOI: 10.1007/s11626-014-9821-7
    Pancreatic islet transplantation is commonly used to treat diabetes. Cell isolation and purification methods can affect the structure and function of the isolated islet cells. Thus, the development of cell isolation techniques that preserve the structure and function of pancreatic islet cells is essential for enabling successful transplantation procedures. The impact of purification procedures on cell function can be assessed by performing ultrastructure and in vivo studies. Thus, the aim of this study was to evaluate the effect of caprine islets purification procedure on islet cell ultrastructure and functional integrity prior to and post-isolation/purification. The islets were isolated from caprine pancreas by using an optimized collagenase XI-S concentration, and the cells were subsequently purified using Euro-Ficoll density gradient. In vitro viability of islets was determined by fluorescein diacetate and propidium iodide staining. Static incubation was used to assess functionality and insulin production by islet cells in culture media when exposed to various levels of glucose. Pancreatic tissues were examined by using light microscopy, fluorescence microscopy, scanning, and transmission electron microscopy. In vivo viability and functionality of caprine islets were assessed by evaluating the transplanted islets in diabetic mice. Insulin assay of glucose-stimulated insulin secretion test showed that the insulin levels increased with increasing concentration of glucose. Thus, purified islets stimulated with high glucose concentration (25 mM) secreted higher levels of insulin (0.542 ± 0.346 μg/L) than the insulin levels (0.361 ± 0.219, 0.303 ± 0.234 μg/L) secreted by exposure to low glucose concentrations (1.67 mM). Furthermore, insulin levels of recipient mice were significantly higher (p cell integrity of peripheral region, the alterations did not significantly alter the functionality and viability of the purified islets.
    Matched MeSH terms: Cell Separation/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links