Displaying all 3 publications

Abstract:
Sort:
  1. El-Garhi HM, El-Aidie SA, Rashid NA, Hayee ZA
    Food Sci Technol Int, 2018 Sep;24(6):465-475.
    PMID: 29600878 DOI: 10.1177/1082013218766979
    This study was undertaken to evaluate the feasibility of using commercial starter cultures for quality improvement of spreadable processed cheese manufactured from ultrafiltered milk retentates. Compared to control, six samples of ultrafiltered milk retentate were incubated at 25 ℃ with starter cultures CHN-22, FRC-60, and ABT-8. Three samples were incubated for 24 h and the others were incubated for 72 h. Physicochemical, microbiological, and organoleptic characteristics in all treatments during the 90-day cold storage (6 ± 2 ℃) period were determined. The results showed that protein content of all treatments was significantly lower than the control. Utilization of starter cultures in ultrafiltered processed cheese production increased titratable acidity, where titratable acidity of the treatments (PC22-3, PC60-3, and PC8-3) was significantly higher than the other treatments and the control. PC8-1, PC60-1, and PC22-1 treatments were the highest penetrometer readings and with low firmness. All treatments had higher water soluble nitrogen/total nitrogen%, total bacterial viable and lactic acid bacterial counts especially PC22-3, PC60-3, and PC8-3 compared to the control. The results revealed that PC60-1 and PC22-3 treatments gained the highest acceptability scores than PC60-3, PC22-1, and the control.
    Matched MeSH terms: Cheese/microbiology
  2. Muhialdin BJ, Hassan Z, Sadon SKh
    J Food Sci, 2011 Sep;76(7):M493-9.
    PMID: 21806613 DOI: 10.1111/j.1750-3841.2011.02292.x
    In the search for new preservatives from natural resources to replace or to reduce the use of chemical preservatives 4 strains of lactic acid bacteria (LAB) were selected to be evaluated for their antifungal activity on selected foods. The supernatants of the selected strains delayed the growth of fungi for 23 to 40 d at 4 °C and 5 to 6 d at 20 and 30 °C in tomato puree, 19 to 29 d at 4 °C and 6 to 12 d at 20 and 30 °C in processed cheese, and 27 to 30 d at 4 °C and 12 to 24 d at 20 and 30 °C in commercial bread. The shelf life of bread with added LAB cells or their supernatants were longer than normal bread. This study demonstrates that Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, L. pentosus G004, and L. paracasi D5 either the cells or their supernatants could be used as biopreservative in bakery products and other processed foods.
    Matched MeSH terms: Cheese/microbiology
  3. Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH
    Mikrochim Acta, 2019 11 19;186(12):804.
    PMID: 31745737 DOI: 10.1007/s00604-019-3913-8
    A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7. Graphical abstractSchematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.
    Matched MeSH terms: Cheese/microbiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links