Displaying all 14 publications

Abstract:
Sort:
  1. Venny, Gan S, Ng HK
    Sci Total Environ, 2012 Mar 1;419:240-9.
    PMID: 22285087 DOI: 10.1016/j.scitotenv.2011.12.053
    This work focuses on the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using modified Fenton (MF) treatment coupled with a novel chelating agent (CA), a more effective technique among currently available technologies. The performance of MF treatment to promote PAH oxidation in artificially contaminated soil was investigated in a packed column with a hydrogen peroxide (H(2)O(2)) delivery system simulating in-situ soil flushing which is more representative of field conditions. The effectiveness of process parameters H(2)O(2)/soil, Fe(3+)/soil, CA/soil weight ratios and reaction time were studied using a 2(4) three level factorial design experiments. An optimised operating condition of the MF treatment was observed at H(2)O(2)/soil 0.05, Fe(3+)/soil 0.025, CA/soil 0.04 and 3h reaction time with 79.42% and 68.08% PAH removals attainable for the upper and lower parts of the soil column respectively. The effects of natural attenuation and biostimulation process as post-treatment in the remediation of the PAH-contaminated soil were also studied. In all cases, 3-aromatic ring PAH (phenanthrene) was more readily degraded than 4-aromatic ring PAH (fluoranthene) regardless of the bioremediation approach. The results revealed that both natural attenuation and biostimulation could offer remarkable enhancement of up to 6.34% and 9.38% in PAH removals respectively after 8 weeks of incubation period. Overall, the results demonstrated that combined inorganic CA-enhanced MF treatment and bioremediation serves as a suitable strategy to enhance soil quality particularly to remediate soils heavily contaminated with mixtures of PAHs.
    Matched MeSH terms: Chelating Agents/chemistry*
  2. Ahmadzadeh S, Kassim A, Rezayi M, Rounaghi GH
    Molecules, 2011 Sep 22;16(9):8130-42.
    PMID: 21941227 DOI: 10.3390/molecules16098130
    The complexation reactions between the macrocyclic ionophore, p-isopropylcalix[6]arene and Cs+ cation were studied in dimethylsulfoxide-acetonitrile (DMSO-AN) binary non-aqueous solvents at different temperatures using a conductometry method. The conductance data show that the stoichiometry of the (p-isopropylcalix[6]-arene·Cs)+ complex in all binary mixed solvents is 1:1. The stability of the complexes is affected by the composition of the binary solvent media and a non-linear behavior was observed for changes of log K(f) of the complex versus the composition of the binary mixed solvents. The thermodynamic parameters (DH°(c) and DS°(c)) for formation of (p-isopropyl-calix[6]arene·Cs)+ complex were obtained from temperature dependence of the stability constant and the obtained results show that the (p-isopropylcalix[6]arene·Cs)+ complex is enthalpy destabilized, but entropy stabilized, and the values of the mentioned parameters are affected strongly by the nature and composition of the binary mixed solvents.
    Matched MeSH terms: Chelating Agents/chemistry*
  3. Aroua MK, Yin CY, Lim FN, Kan WL, Daud WM
    J Hazard Mater, 2009 Jul 30;166(2-3):1526-9.
    PMID: 19168286 DOI: 10.1016/j.jhazmat.2008.11.033
    The effects of polyethyleneimine (PEI) impregnation on the Pb(2+) adsorption kinetics of palm shell-activated carbon and pH profile of bulk solution were investigated. Adsorption data were fitted to four established adsorption kinetics models, namely, pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion. It was found that PEI impregnation at 16.68 and 29.82 wt% PEI/AC increased the Pb(2+) uptake rate while the opposite was observed for PEI impregnation at 4.76 and 8.41 wt% PEI/AC. The increased uptake rates were due to higher concentration of PEI molecules on the surface of clogged pores as well as varying pore volumes. The adsorption kinetics data fitted the pseudo-second-order model better than the pseudo-first-order model, implying chemisorption was the rate-controlling step. The bulk solution pH generally showed an increasing trend from the use of virgin to PEI-impregnated activated carbon.
    Matched MeSH terms: Chelating Agents/chemistry
  4. Haron MJ, Yunus WM
    PMID: 11460327
    A cerium-loaded poly(hydroxamic acid) chelating ion exchanger was used for fluoride ion removal from aqueous solution. The resin was effective in decreasing the fluoride concentration from 5 mM down to 0.001 mM in acidic pH between 3 and 6. The sorption followed a Langmuir model with a maximum capacity of 0.5 mmol/g. The removal is accomplished by an anion exchange mechanism. The rate constant for the sorption was found to be 9.6 x 10(-2) min-1. A column test shows that the fluoride ion was retained on the column until breakthrough point and the fluoride sorbed in the column can be eluted with 0.1 M NaOH. The column can be reused after being condition with hydrochloric acid at pH 4. The resin was tested and found to be effective for removal of fluoride from actual industrial wastewater.
    Matched MeSH terms: Chelating Agents/chemistry*
  5. Granato D, Shahidi F, Wrolstad R, Kilmartin P, Melton LD, Hidalgo FJ, et al.
    Food Chem, 2018 Oct 30;264:471-475.
    PMID: 29853403 DOI: 10.1016/j.foodchem.2018.04.012
    As many studies are exploring the association between ingestion of bioactive compounds and decreased risk of non-communicable diseases, the scientific community continues to show considerable interest in these compounds. In addition, as many non-nutrients with putative health benefits are reducing agents, hydrogen donors, singlet oxygen quenchers or metal chelators, measurement of antioxidant activity using in vitro assays has become very popular over recent decades. Measuring concentrations of total phenolics, flavonoids, and other compound (sub)classes using UV/Vis spectrophotometry offers a rapid chemical index, but chromatographic techniques are necessary to establish structure-activity. For bioactive purposes, in vivo models are required or, at the very least, methods that employ distinct mechanisms of action (i.e., single electron transfer, transition metal chelating ability, and hydrogen atom transfer). In this regard, better understanding and application of in vitro screening methods should help design of future research studies on 'bioactive compounds'.
    Matched MeSH terms: Chelating Agents/chemistry
  6. Hajeb P, Jinap S
    J Agric Food Chem, 2012 Jun 13;60(23):6069-76.
    PMID: 22515475 DOI: 10.1021/jf300582j
    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
    Matched MeSH terms: Chelating Agents/chemistry*
  7. Haron MJ, Jahangirian H, Silong S, Yusof NA, Kassim A, Rafiee-Moghaddam R, et al.
    Int J Mol Sci, 2012;13(2):2148-59.
    PMID: 22408444 DOI: 10.3390/ijms13022148
    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO(3) and H(2)SO(4). The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III).
    Matched MeSH terms: Iron Chelating Agents/chemistry*
  8. Hosseinzadeh M, Hadi AH, Mohamad J, Khalilzadeh MA, Cheahd SC, Fadaeinasab M
    Comb Chem High Throughput Screen, 2013 Feb;16(2):160-6.
    PMID: 23173924
    A new linderone A, namely 2-cinnamoyl-3-hydroxy-4, 5-dimethoxycyclopenta-2, 4-dienone (5), together with three known flavonoids (1-3) and one linderone (4), were isolated from the bark of Lindera oxyphylla. Extensive spectroscopic analysis including 1D and 2D-NMR spectra determined their sturctures. In addition, the antioxidant activity of all the compounds has been determined using 2, 2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferric reducing antioxidant power (FRAP) and ferrous ion chelating (FIC) methods. Compound 3 showed excellent DPPH scavenging activity with IC50% value of 8.5 ± 0.004% (μg/mL) which is comparable with vitamin C. This compound, also showed an absorbance value of 1.00 ± 0.06% through FRAP test when compared with Butyl Hydroxy Aniline (BHA). However, FIC showed low activity for all the isolated compounds (chelating activity less than 50%) in comparison with ethylene diamine tetra acetic acid (EDTA). Anticancer activity for all compounds has also been measured on A375 human melanoma, HT-29 colon adenocarcinoma, MCF-7 human breast adenocarcinoma cells, WRL-68 normal hepatic cells, A549 non-small cell lung cancer cells and PC-3 prostate adenocarcinoma cell line. Compound 1 showed A549=65.03%, PC-3=30.12%, MCF-7=47.67, compound 2 showed PC-3=90.13%, compound 3 showed MCF-7=79.57 and for compound 5 MCF-7 is 96.33.
    Matched MeSH terms: Chelating Agents/chemistry
  9. Mayakrishnan V, Veluswamy S, Sundaram KS, Kannappan P, Abdullah N
    Asian Pac J Trop Med, 2013 Jan;6(1):20-6.
    PMID: 23317881 DOI: 10.1016/S1995-7645(12)60195-3
    OBJECTIVE: To elucidate free radical scavenging activity of ethanolic extract Lagenaria siceraria (L. siceraria) (Molina) fruit.

    METHODS: The free radical scavenging activity of the L. siceraria (Molina) fruit extract was assayed by using α,α-diphenyl-β-picrylhydrazyl (DPPH), 2,20-azinobis 3-ethyl benzothiazoline-6-sulfonate (ABTS), FRAP, reducing power, chelating ability and β-carotene bleaching assay.

    RESULTS: The IC(50) values of DPPH and ABTS radical-scavenging activity was found to be 1.95 mg/mL and 19 mg/mL, respectively. In ferrous chelation assay, the percentage of inhibition was found to be 89.21%. The reducing power of ethanolic extract of L. siceraria (Molina) fruit was 0.068 at 1 mg/mL and increased to 0.192 at 5 mg/mL. The β-carotene linoleate bleaching assay was 46.7% at 5 mg/mL and antioxidant activity using FRAP at 0.305 for 1 mg/mL to 0.969 for 5 mg/mL.

    CONCLUSIONS: The results indicate that L. siceraria (Molina) fruit could be an important sources of natural radical scavengers.

    Matched MeSH terms: Iron Chelating Agents/chemistry
  10. Samie N, Haerian B, Muniandy S, Green D, Ashouri M
    Appl Biochem Biotechnol, 2015 Apr;175(7):3397-417.
    PMID: 25820296 DOI: 10.1007/s12010-015-1513-6
    Our newly discovered metalloprotease, designated as ALP NS12 was selected using gelatin agar plates with incubation at 100 °C. Subcloning of the fragments in to pUC118 to make E. coli HB101 (pPEMP01NS) with following two-step chromatography using diethylaminoethyl sepharose (DEAE-sepharose) and Sephadex G-100 columns to purify 97-kDa expressed enzyme was performed. Although activity of immobilized ALP NS12 on glass surface was established at temperatures between 70 and 120 °C and pH ranges 4.0-13.0, the optimum temperature and pH were achieved at 100 °C and 11.0, respectively. Enhancement of enzyme activity was obtained in the presence of 5 mM MnCl2 (91 %), CaCl2 (357 %), FeCl2 (175 %), MgCl2 (94 %), ZnCl2 (412 %), NiCl (86 %), NaCl (239 %), and Na-sulfate (81 %) while inhibition was observed with EDTA (5 mM), PMSF (3 mM), urea (8 M), and SDS (1 %) at 65, 37, 33, and 42 %, respectively. Consequently, the enzyme was well analyzed using crystallography and protein modeling. ALP NS12 can be applied in industrial processes at extreme temperatures and under highly basic conditions, chelators, and detergents.
    Matched MeSH terms: Chelating Agents/chemistry
  11. Sivasothy Y, Hadi AH, Mohamad K, Leong KH, Ibrahim H, Sulaiman SF, et al.
    Bioorg Med Chem Lett, 2012 Jun 1;22(11):3831-6.
    PMID: 22546674 DOI: 10.1016/j.bmcl.2012.02.064
    The rhizomes of Zingiber spectabile yielded a new dimeric flavonol glycoside for which the name kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside-(I-6,II-8)-kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside; spectaflavoside A (1) was proposed, along with kaempferol and its four acetylrhamnosides (2-6), demethoxycurcumin (7) and curcumin (8). The structure of spectaflavoside A was elucidated by spectroscopic methods including, 1D and 2D NMR techniques. This is the first report on the occurrence of a dimeric flavonol glycoside in the Zingiberaceae and the second in nature. Spectaflavoside A was found to be a potent iron chelating agent.
    Matched MeSH terms: Iron Chelating Agents/chemistry*
  12. Zarei M, Ghanbari R, Tajabadi N, Abdul-Hamid A, Bakar FA, Saari N
    J Food Sci, 2016 Feb;81(2):C341-7.
    PMID: 26720491 DOI: 10.1111/1750-3841.13200
    Palm kernel cake protein was hydrolyzed with different proteases namely papain, bromelain, subtilisin, flavourzyme, trypsin, chymotrypsin, and pepsin to generate different protein hydrolysates. Peptide content and iron-chelating activity of each hydrolysate were evaluated using O-phthaldialdehyde-based spectrophotometric method and ferrozine-based colorimetric assay, respectively. The results revealed a positive correlation between peptide contents and iron-chelating activities of the protein hydrolysates. Protein hydrolysate generated by papain exhibited the highest peptide content of 10.5 mM and highest iron-chelating activity of 64.8% compared with the other hydrolysates. Profiling of the papain-generated hydrolysate by reverse phase high performance liquid chromatography fractionation indicated a direct association between peptide content and iron-chelating activity in most of the fractions. Further fractionation using isoelectric focusing also revealed that protein hydrolysate with basic and neutral isoelectric point (pI) had the highest iron-chelating activity, although a few fractions in the acidic range also exhibited good metal chelating potential. After identification and synthesis of papain-generated peptides, GGIF and YLLLK showed among the highest iron-chelating activities of 56% and 53%, whereas their IC50 were 1.4 and 0.2 μM, respectively.
    Matched MeSH terms: Iron Chelating Agents/chemistry
  13. Yusri NM, Chan KW, Iqbal S, Ismail M
    Molecules, 2012 Oct 25;17(11):12612-21.
    PMID: 23099617 DOI: 10.3390/molecules171112612
    A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.
    Matched MeSH terms: Chelating Agents/chemistry
  14. Chin LF, Kong SM, Seng HL, Khoo KS, Vikneswaran R, Teoh SG, et al.
    J Inorg Biochem, 2011 Mar;105(3):339-47.
    PMID: 21421121 DOI: 10.1016/j.jinorgbio.2010.11.018
    The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)(2)(phen) 2, (phen=1,10-phenanthroline, ma(-)=maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.
    Matched MeSH terms: Chelating Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links