Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, et al.
    Carbohydr Polym, 2014 Nov 26;113:115-30.
    PMID: 25256466 DOI: 10.1016/j.carbpol.2014.07.007
    Chitosan based adsorbents have received a lot of attention for adsorption of dyes. Various modifications of this polysaccharide have been investigated to improve the adsorption properties as well as mechanical and physical characteristics of chitosan. This review paper discusses major research topics related to chitosan and its derivatives for application in the removal of dyes from water. Modification of chitosan changes the original properties of this material so that it can be more suitable for adsorption of different types of dye. Many chitosan derivatives have been obtained through chemical and physical modifications of raw chitosan that include cross-linking, grafting and impregnation of the chitosan backbone. Better understanding of these varieties and their affinity toward different types of dye can help future research to be properly oriented to address knowledge gaps in this area. This review provides better opportunity for researchers to better explore the potential of chitosan-derived adsorbents for removal of a great variety of dyes.
    Matched MeSH terms: Chitosan/analogs & derivatives
  2. Aziz SB, Karim WO, Brza MA, Abdulwahid RT, Saeed SR, Al-Zangana S, et al.
    Int J Mol Sci, 2019 Oct 23;20(21).
    PMID: 31652832 DOI: 10.3390/ijms20215265
    In this work, analysis of ion transport parameters of polymer blend electrolytes incorporated with magnesium trifluoromethanesulfonate (Mg(CF3SO3)2) was carried out by employing the Trukhan model. A solution cast technique was used to obtain the polymer blend electrolytes composed of chitosan (CS) and poly (2-ethyl-2-oxazoline) (POZ). From X-ray diffraction (XRD) patterns, improvement in amorphous phase for the blend samples has been observed in comparison to the pure state of CS. From impedance plot, bulk resistance (Rb) was found to decrease with increasing temperature. Based on direct current (DC) conductivity (σdc) patterns, considerations on the ion transport models of Arrhenius and Vogel-Tammann-Fulcher (VTF) were given. Analysis of the dielectric properties was carried out at different temperatures and the obtained results were linked to the ion transport mechanism. It is demonstrated in the real part of electrical modulus that chitosan-salt systems are extremely capacitive. The asymmetric peak of the imaginary part (Mi) of electric modulus indicated that there is non-Debye type of relaxation for ions. From frequency dependence of dielectric loss (ε″) and the imaginary part (Mi) of electric modulus, suitable coupling among polymer segmental and ionic motions was identified. Two techniques were used to analyze the viscoelastic relaxation dynamic of ions. The Trukhan model was used to determine the diffusion coefficient (D) by using the frequency related to peak frequencies and loss tangent maximum heights (tanδmax). The Einstein-Nernst equation was applied to determine the carrier number density (n) and mobility. The ion transport parameters, such as D, n and mobility (μ), at room temperature, were found to be 4 × 10-5 cm2/s, 3.4 × 1015 cm-3, and 1.2 × 10-4 cm2/Vs, respectively. Finally, it was shown that an increase in temperature can also cause these parameters to increase.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  3. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Hilmi NHZ, et al.
    Int J Mol Sci, 2019 May 07;20(9).
    PMID: 31067720 DOI: 10.3390/ijms20092247
    The use of nanotechnology could play a significant role in the agriculture sector, especially in the preparation of new-generation agronanochemicals. Currently, the economically important plant of Malaysia, the oil palm, faces the threat of a devastating disease which is particularly caused by a pathogenic fungus, Ganoderma boninense. For the development of an effective antifungal agent, a series of chitosan nanoparticles loaded with a fumigant, dazomet, were prepared using various concentrations of sodium tripolyphosphate (TPP)-2.5, 5, 10, and 20 mg/mL, abbreviated as CDEN2.5, CDEN5, CDEN10, and CDEN20, respectively. The effect of TPP as a crosslinking agent on the resulting particle size of the synthesized nanoparticles was investigated using a particle size analyzer and high-resolution transmission electron microscopy (HRTEM). Both methods confirmed that increasing the TPP concentration resulted in smaller particles. In addition, in vitro fumigant release at pH 5.5 showed that the release of the fumigant from the nanoparticles was of a sustained manner, with a prolonged release time up to 24 h. Furthermore, the relationship between the chitosan-dazomet nanoparticles and the in vitro antifungal activity against G. boninense was also explored, where the nanoparticles of the smallest size, CDEN20, gave the highest antifungal efficacy with the lowest half maximum effective concentration (EC50) value of 13.7 ± 1.76 ppb. This indicates that the smaller-sized agronanoparticles were more effective as an antifungal agent. The size can be altered, which plays a crucial role in combatting the Ganoderma disease. The agronanoparticles have controlled release properties and high antifungal efficacy on G. boninense, thus making them a promising candidate to be applied in the field for Ganoderma treatment.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  4. Kusrini E, Arbianti R, Sofyan N, Abdullah MA, Andriani F
    PMID: 24177873 DOI: 10.1016/j.saa.2013.09.132
    In the presence of hydroxyl and amine groups, chitosan is highly reactive; therefore, it could be used as a carrier in drug delivery. For this study, chitosan-Sm complexes with different concentrations of samarium from 2.5 to 25 wt.% have been successfully synthesized by the impregnation method. Chitosan combined with Sm3+ ions produced a drug carrier material with fluorescence properties; thus, it could also be used as an indicator of drug release with ibuprofen (IBU) as a model drug. We evaluated the spectroscopic and interaction properties of chitosan and Sm3+ ions, the interaction of chitosan-Sm matrices with IBU as a model drug, and the effect of Sm3+ ions addition on the chitosan ability to adsorb the drug. The result showed that the hypersensitive fluorescence intensity of chitosan-Sm (2.5 wt.%) is higher than the others, even though the adsorption efficiency of chitosan-Sm 2.5wt.% is lower (29.75%) than that of chitosan-Sm 25 wt.% (33.04%). Chitosan-Sm 25 wt.% showed the highest efficiency of adsorption of ibuprofen (33.04%). In the release process of ibuprofen from the chitosan-Sm-IBU matrix, the intensity of orange fluorescent properties in the hypersensitive peak of 4G5/2→6H7/2 transition at 590 nm was observed. Fluorescent intensity increased with the cumulative amount of IBU released; therefore, the release of IBU from the Sm-modified chitosan complex can be monitored by the changes in fluorescent intensity.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  5. Jawad AH, Nawi MA
    Carbohydr Polym, 2012 Sep 1;90(1):87-94.
    PMID: 24751014 DOI: 10.1016/j.carbpol.2012.04.066
    Photocatalytic oxidation of crosslinked chitosan-epichlorohydrin (CS-ECH) film was successfully achieved via an immobilized TiO2/CS-ECH photocatalyst system on a glass plate. Oxidation process of CS-ECH film was carried out by irradiating the system with a 45-W fluorescent lamp for 10h in ultra-pure water. The results indicate the formation of carbonyl functional groups and partial elimination of amine groups in the molecular structure of the oxidized CS-ECH film. This oxidized CS-ECH film has different optical properties, ionic conductivity, degree of transparency, swelling index and chemical stability than the fresh CS-ECH film. In the environmental applications, the TiO2/oxidized-CS-ECH photocatalyst system can have photodegradation and faster mineralization rate of phenol than both fresh TiO2/CS-ECH and TiO2/oxidized-CS photocatalyst systems. This simple photocatalyst system, therefore can be considered as an environmental friendly method to oxidize synthetic biopolymer and to improve the photocatalytic efficiency of TiO2 to treat wastewater.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  6. Ngah WS, Fatinathan S
    J Environ Sci (China), 2010;22(3):338-46.
    PMID: 20614774
    The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  7. Vakili M, Rafatullah M, Salamatinia B, Ibrahim MH, Abdullah AZ
    Carbohydr Polym, 2015 Nov 05;132:89-96.
    PMID: 26256328 DOI: 10.1016/j.carbpol.2015.05.080
    The adsorption behavior of chitosan (CS) beads modified with 3-aminopropyl triethoxysilane (APTES) for the removal of reactive blue 4 (RB4) in batch studies has been investigated. The effects of modification conditions, such as the APTES concentration, temperature and reaction time on RB4 removal, were studied. The adsorbent prepared at a concentration of 2 wt% APTES for 8h at 50 °C was the most effective one for RB4 adsorption. The adsorption capacity of modified CS beads (433.77 mg/g) was 1.37 times higher than that of unmodified CS beads (317.23 mg/g). The isotherm data are adequately described by a Freundlich model, and the kinetic study revealed that the pseudo-second-order rate model was in better agreement with the experimental data. The negative values of the thermodynamic parameters, including ΔG° (-2.28 and -4.70 kJ/mol at 30 ± 2 °C), ΔH° (-172.18 and -43.82 kJ/mol) and ΔS° (-560.71 and -129.08 J/mol K) for CS beads and APTES modified beads, respectively, suggest that RB4 adsorption is a spontaneous and exothermic process.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  8. Lusiana RA, Sangkota VDA, Sasongko NA, Gunawan G, Wijaya AR, Santosa SJ, et al.
    Int J Biol Macromol, 2020 Jun 01;152:633-644.
    PMID: 32112845 DOI: 10.1016/j.ijbiomac.2020.02.290
    In this study, improvement of urea and creatinine permeability of polyethersulfone (PES) membrane by coating with synthesized tripolyphosphate-crosslinked chitosan (TPP-CS) has been conducted. Original and modified membranes, e.g. pristine PES, polyethersulfone-polyethylene glycol (PES-PEG) and PES-PEG/TPP-CS membranes were characterized using FTIR, DTG, SEM, AFM, water uptake, contact angles, porosity measurement, tensile strength test and permeation tests against urea and creatinine. The results show that the PES modification by TPP-CS coating has been successfully carried out. The water uptake ability, hydrophilicity and porosity of the modified membranes increase significantly to a greater degree. All modified membranes have good thermal stability and tensile strength and their permeation ability towards urea and creatinine increase with the increasing concentration of TPP-CS. PES membrane has urea clearance ability of 7.36 mg/dL and creatinine of 0.014 mg/dL; membrane PES-PEG shows urea clearance of 11.87 mg/dL and creatinine of 0.32 mg/dL; while PES-PEG/TPP-CS membrane gives urea clearance of 20.87-36.40 mg/dL and creatinine in the range of 0.52-0.78 mg/dL. These results suggest that the PES-PEG membrane coated with TPP-CS is superior and can be used as potential material for hemodialysis membrane.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  9. Tan HW, Misran M
    Int J Pharm, 2013 Jan 30;441(1-2):414-23.
    PMID: 23174410 DOI: 10.1016/j.ijpharm.2012.11.013
    In this study, the preparation of N-pamitoyl chitosan (ChP) anchored oleic acid (OA) liposome was demonstrated. Two different types of water-soluble ChPs with different degrees of acylation (DA) were selected for this study. The presence of ChPs on the surface of OA liposome was confirmed with their micrographs and physicochemical properties. The "peeling off" effect on the surface of the ChP-anchored OA (OAChP) liposomes was observed on the atomic force microscope micrographs and confirmed the presence of the ChPs layer on the liposome surface. The surface tension of the OAChPs liposome solution was found to be higher than that of the OA liposome solution. This result indicated the removal of OA monomer by ChPs from the air-water interface. The increase in the minimum area per headgroup (A(min)) of the OA with the presence of ChPs has further proved the interaction between OA monomer and the hydrophobic moieties of the ChPs. The ChPs anchored onto the OA monolayer increased the curvature of the OAChP liposomes monolayer and reduced the liposome size. The size of the OAChP liposomes was reduced by 30 nm as compared with the unmodified OA liposome. Results revealed that the anchored ChPs can improve the integrity and rigidity of the OA liposome.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  10. Shapi'i RA, Othman SH, Nordin N, Kadir Basha R, Nazli Naim M
    Carbohydr Polym, 2020 Feb 15;230:115602.
    PMID: 31887886 DOI: 10.1016/j.carbpol.2019.115602
    Chitosan nanoparticles (CNP) were synthesized via ionic gelation and used for the preparation of starch-based nanocomposite films containing different concentration of CNP (0, 5, 10, 15, 20% w/w). Antimicrobial properties of starch/CNP films was evaluated via in vitro (disc diffusion analysis) and in vivo (microbial count in wrapped cherry tomatoes) study. It was found that inhibitory zone of the 15 and 20% of starch/CNP films were clearly observed for all the tested bacteria including Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. In vivo study revealed that the starch/CNP film (15% w/w) was more efficient to inhibit the microbial growth in cherry tomatoes (7 × 102 CFU/g) compared to neat starch film (2.15 × 103 CFU/g) thus confirmed the potential application of the films as antimicrobial food packaging.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  11. Periayah MH, Halim AS, Hussein AR, Saad AZ, Rashid AH, Noorsal K
    Int J Biol Macromol, 2013 Jan;52:244-9.
    PMID: 23063426 DOI: 10.1016/j.ijbiomac.2012.10.001
    Chitosan-derived hemostatic agents with various formulations may have distinct potential in hemostasis. This study assessed the ability of different grades and forms of chitosan derivatives as hemostatic agents to enhance platelet adhesion and aggregation in vitro. The chitosan derivatives utilized were 2% NO-CMC, 7% NO-CMC (with 0.45 mL collagen), 8% NO-CMC, O-C 52, 5% O-CMC-47, NO-CMC-35, and O-C 53. Samples of chitosan derivatives weighing 5mg were incubated at 37°C with 50 μL of phosphate buffer saline (PBS) (pH 7.4) for 60 min. The morphological features of the platelets upon adherence to the chitosan were viewed using scanning electron microscope (SEM), and the platelet count was analyzed with an Automated Hematology Analyzer. For platelet aggregation, we added an adenosine diphosphate (ADP) agonist to induce the chitosan-adhered platelets. O-C 52 bound with platelets exhibited platelet aggregates and clumps on the surface of the membrane layer with approximately 70-80% coverage. A statistically significant correlation (p<0.01) for the platelet count was identified between the baseline value and the values at 10 min and 20 min. The results indicate that O-C 53 and O-C 52 were able to promote clotting have the potential to induce the release of platelets engaged in the process of hemostasis.
    Matched MeSH terms: Chitosan/analogs & derivatives
  12. Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS
    Int J Biol Macromol, 2020 Oct 15;161:503-513.
    PMID: 32534088 DOI: 10.1016/j.ijbiomac.2020.06.069
    Chitosan (CS) was physically modified with fly ash (FA) powder and subjected to chemical cross-linking reaction with tripolyphosphate (TPP) to produce a cross-linked CS-TPP/FA composite as adsorbent for removal of reactive orange 120 (RR120) dye. Different ratios of FA such as 25% FA particles (CS-TPP/FA-25) and 50% FA particles (CS-TPP/FA-50) were loaded into the molecular structure of CS-TPP. Box-Behnken design (BBD) was applied to optimize the input variables that affected the synthesis of the adsorbent and the adsorption of RR120 dye. These variables included FA loading (A: 0-50%), adsorbent dose (B: 0.04-0.1 g), solution pH (C: 4-10), temperature (D: 30 °C-60 °C), and time (E: 30-90 min). Results revealed that the highest removal (88.8%) of RR120 dye was achieved by CS-TPP/FA-50 at adsorbent dosage of 0.07 g, solution of pH 4, temperature of 45 °C, and time of 60 min. The adsorption equilibrium was described by the Freundlich model, with 165.8 mg/g at 45 °C as the maximum adsorption capacity of CS-TPP/FA-50 for RR120 dye. This work introduces CS-TPP/FA-50 as an ideal composite adsorbent for removal of textile dyes from the aqueous environment.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  13. Keong LC, Halim AS
    Int J Mol Sci, 2009 Mar;10(3):1300-1313.
    PMID: 19399250 DOI: 10.3390/ijms10031300
    One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (beta-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing.
    Matched MeSH terms: Chitosan/analogs & derivatives
  14. Lee SY, Kamarul T
    Int J Biol Macromol, 2014 Mar;64:115-22.
    PMID: 24325858 DOI: 10.1016/j.ijbiomac.2013.11.039
    In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30 kGy and 50 kGy). The co-polymers were then lyophilized to form macroporous three-dimensional (3-D) matrix. Scaffold morphology, porosity, swelling properties, biocompatibility, expression of glycosaminoglycan (GAG) and type II collagen following the seeding of primary chondrocytes were studied up to 28 days. The results demonstrate that irradiation of e-beam at 50 kGy increased scaffold porosity and pore sizes subsequently enhanced cell attachment and proliferation. Scanning electron microscopy and transmission electron microscopy revealed extensive interconnected microstructure of PVA-PEG-NOCC, demonstrated cellular activities on the scaffolds and their ability to maintain chondrocyte phenotype. In addition, the produced PVA-PEG-NOCC scaffolds showed superior swelling properties, and increased GAG and type II collagen secreted by the seeded chondrocytes. In conclusion, the results suggest that by adding NOCC and irradiation cross-linking at 50 kGy, the physical and biological properties of PVA-PEG blend can be further enhanced thereby making PVA-PEG-NOCC a potential scaffold for chondrocytes.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  15. Lee SY, Wee AS, Lim CK, Abbas AA, Selvaratnam L, Merican AM, et al.
    J Mater Sci Mater Med, 2013 Jun;24(6):1561-70.
    PMID: 23512151 DOI: 10.1007/s10856-013-4907-4
    This study aims to pre-assess the in vitro and in vivo biocompatibility of poly(vinyl alcohol)-carboxylmethyl-chitosan-poly(ethylene glycol) (PCP) scaffold. PCP was lyophilised to create supermacroporous structures. 3-(4, 5-dimethyl-thiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and immunohistochemistry (IHC) were used to evaluate the effectiveness of PCP scaffolds for chondrocytes attachment and proliferation. The ultrastructural was assessed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Extracellular matrix (ECM) formation was evaluated using collagen type-II staining, glycosaminoglycan (GAG) and collagen assays. Histological analysis was conducted on 3-week implanted Sprague-Dawley rats. The MTT, IHC, SEM and TEM analyses confirm that PCP scaffolds promoted cell attachment and proliferation in vitro. The chondrocyte-PCP constructs secreted GAG and collagen type-II, both increased significantly from day-14 to day-28 (P 
    Matched MeSH terms: Chitosan/analogs & derivatives*
  16. Periayah MH, Halim AS, Mat Saad AZ, Yaacob NS, Hussein AR, Abdul Karim F, et al.
    Thromb Res, 2015 Sep;136(3):625-33.
    PMID: 26254703 DOI: 10.1016/j.thromres.2015.07.027
    Von Willebrand disease (vWD) is the second least common hemostatic disorder in Malaysia, and it has a low prevalence. This study examined the underlying platelet thrombogenicity cascades in the presence of different formulations of chitosan-derivatives in vWD patients. This paper aimed to determine the significant influence of chitosan biomaterial in stimulating the platelet thrombogenicity cascades that involve the von Willebrand factor, Factor 8, Thromboxane A2, P2Y12 and Glycoprotein IIb/IIIa in vWD.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  17. Subramaniam R, Mani MP, Jaganathan SK
    Cardiovasc Eng Technol, 2018 09;9(3):503-513.
    PMID: 29700782 DOI: 10.1007/s13239-018-0357-y
    In this study, a small vascular graft based on polyurethane (PU) blended with chitosan (Ch) nanoparticles was fabricated using electrospinning technique. Initially, the chitosan nanoparticles were synthesized using ionic gelation method. UV-Vis spectrophotometer confirmed the presence of synthesized Ch nanoparticles by exhibiting absorption peak at 288 nm and the Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the existence of the chitosan. Further, the synthesized Ch nanoparticles showed size diameter in the range of 134 ± 58 nm as measured using ImageJ. In the electrospun PU/chitosan graft, the fiber diameter and pore size diameter was found to be reduced compared to the pure PU owing to incorporation of chitosan into PU matrix. The FTIR spectrum revealed the presence of chitosan in the prepared nanocomposite membrane by the formation of the hydrogen bond and peak shift of CH and NH stretching. Moreover, the contact angle measurements revealed that the prepared graft showed decreased contact angle indicating hydrophilic nature compared to the pristine PU. The cytocompatibility studies revealed the non-toxic behavior of the fabricated graft. Hence, the prepared graft exhibiting significant physiochemical and non-toxic properties may be a plausible candidate for cardiovascular graft applications.
    Matched MeSH terms: Chitosan/analogs & derivatives
  18. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
    Matched MeSH terms: Chitosan/analogs & derivatives
  19. Nawaz A, Wong TW
    J Invest Dermatol, 2018 11;138(11):2412-2422.
    PMID: 29857069 DOI: 10.1016/j.jid.2018.04.037
    5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.
    Matched MeSH terms: Chitosan/analogs & derivatives*
  20. Das S, Tripathy S, Pramanik P, Saha B, Roy S
    Cytokine, 2021 08;144:155555.
    PMID: 33992538 DOI: 10.1016/j.cyto.2021.155555
    Emergence and spread of resistant parasites to the newest chemotherapeutic anti-malarial agents are the biggest challenges against malaria control programs. Therefore, developing a novel effective treatment to reduce the overgrowing burden of multidrug resistant malaria is a pressing need. Herein, we have developed a biocompatible and biodegradable, non-toxic chitosan-tripolyphosphate-chloroquine (CS-TPP CQ) nanoparticle. CS-TPP CQ nanoparticles effectively kill the parasite through redox generation and induction of the pro- and anti-inflammatory cytokines in both sensitive and resistant parasite in vitro. The in vitro observations showed a strong inhibitory effect (p 
    Matched MeSH terms: Chitosan/analogs & derivatives
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links