Displaying all 18 publications

  1. Nocca G, Ahmed HMA, Martorana GE, Callà C, Gambarini G, Rengo S, et al.
    J Endod, 2017 Sep;43(9):1545-1552.
    PMID: 28734651 DOI: 10.1016/j.joen.2017.04.025
    INTRODUCTION: The literature reveals controversies regarding the formation of para-chloroaniline (PCA) when chlorhexidine (CHX) is mixed with sodium hypochlorite (NaOCl). This study aimed to investigate the stability of PCA in the presence of NaOCl and to examine the in vitro cytotoxic effects of CHX/NaOCl reaction mixtures.

    METHODS: Different volumes of NaOCl were added to CHX (mix 1) or PCA (mix 2). Upon centrifugation, the supernatant and precipitate fractions collected from samples were analyzed using high-performance liquid chromatography. The cytotoxic effects of both fractions were examined on human periodontal ligament and 3T3 fibroblast cell lines.

    RESULTS: High-performance liquid chromatographic analysis showed no PCA signal when NaOCl was mixed with CHX (mix 1). In mix 2, the intensity of PCA was decreased when NaOCl was added to PCA, and chromatographic signals, similar to that of CHX/NaOCl, were also observed. The mortality of precipitates exerted on both cell lines was lower compared with that of supernatants.

    CONCLUSIONS: The discrepancy in the data from the literature could be caused by the instability of the PCA in the presence of NaOCl. The CHX/NaOCl reaction mixture exhibits a wide range of cytotoxic effects.

    Matched MeSH terms: Chlorhexidine/pharmacology*
  2. Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, et al.
    BMC Oral Health, 2021 03 12;21(1):116.
    PMID: 33711992 DOI: 10.1186/s12903-021-01470-x
    BACKGROUND: Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin.

    METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.

    RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.

    CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.

    Matched MeSH terms: Chlorhexidine/pharmacology
  3. Mohd Daud N, Saeful Bahri IF, Nik Malek NA, Hermawan H, Saidin S
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:130-9.
    PMID: 27153117 DOI: 10.1016/j.colsurfb.2016.04.046
    Chlorhexidine (CHX) is known for its high antibacterial substantivity and is suitable for use to bio-inert medical devices due to its long-term antibacterial efficacy. However, CHX molecules require a crosslinking film to be stably immobilized on bio-inert metal surfaces. Therefore, polydopamine (PDA) was utilized in this study to immobilize CHX on the surface of 316L type stainless steel (SS316L). The SS316L disks were pre-treated, modified with PDA film and immobilized with different concentrations of CHX (10mM-50mM). The disks were then subjected to various surface characterization analyses (ATR-FTIR, XPS, ToF-SIMS, SEM and contact angle measurement) and tested for their cytocompatibility with human skin fibroblast (HSF) cells and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results demonstrated the formation of a thin PDA film on the SS316L surface, which acted as a crosslinking medium between the metal and CHX. CHX was immobilized via a reduction process that covalently linked the CHX molecules with the functional group of PDA. The immobilization of CHX increased the hydrophobicity of the disk surfaces. Despite this property, a low concentration of CHX optimized the viability of HSF cells without disrupting the morphology of adherent cells. The immobilized disks also demonstrated high antibacterial efficacy against both bacteria, even at a low concentration of CHX. This study demonstrates a strong beneficial effect of the crosslinked PDA film in immobilizing CHX on bio-inert metal, and these materials are applicable in medical devices. Specifically, the coating will restrain bacterial proliferation without suffocating nearby tissues.
    Matched MeSH terms: Chlorhexidine/pharmacology
  4. Mohd Masri S, Nazni WA, Lee HL, T Rogayah TA, Subramaniam S
    Trop Biomed, 2005 Dec;22(2):185-9.
    PMID: 16883286 MyJurnal
    Three new techniques of sterilising maggots of Lucilia cuprina for the purpose of debriding intractable wounds were studied. These techniques were utilisation of ultra-violet C (UVC) and maggot sterilisation with disinfectants. The status of sterility was checked on nutrient agar and blood agar and confirmed with staining. The indicators for the effectiveness of the methods were sterility and survival rate of the eggs or larvae. Egg sterilisation with UVC had the lowest hatching rate (16+/-0.00%) while egg sterilisation with disinfectants showed high hatching rate (36.67+/-4.41%) but low maggot survival rate (31.67+/-1.67%). Sterilisation of the maggots was the most suitable, since the survival rate was the highest (88.67+/-0.88%). Complete sterility was achieved in all cases, except that Proteus mirabilis was consistently found. However, the presence of this microorganism was considered beneficial.
    Matched MeSH terms: Chlorhexidine/pharmacology
  5. Arzmi MH, Abdul Razak F, Yusoff Musa M, Wan Harun WH
    FEMS Yeast Res., 2012 May;12(3):351-8.
    PMID: 22225549 DOI: 10.1111/j.1567-1364.2011.00786.x
    Phenotypic switching is characterized as a virulence factor of Candida spp. This study was carried out to evaluate the phenotypic switching ability of C. krusei ATCC 14243 and to determine its effect on the biological properties, adherence capacity and susceptibility towards chlorhexidine digluconate (CHX). To induce switched generations C. krusei was cultured under nitrogen-depleted growth conditions by adding phloxine B. These phenotypically switched colonies were designated as the 1st generation. Subsequent sub-culturing was performed to produce the 2nd, 3rd and 4th switched generations. The recovery of the 3rd generation was the highest at 85.7% while that of the 4th generation was lower at 70.8%, and the recovery of the 1st and 2nd generations gradually reduced to 46.6% and 36.4%, respectively. All generations of C. krusei were susceptible towards CHX. The unswitched C. krusei was the most susceptible but the least adherent to coated hard surfaces. The 2nd generation was the least susceptible, but with the highest adherent ability. The minimum inhibition concentration and minimal fungicidal concentration of C. krusei of all generations were determined at 0.4 mg mL(-1) . These observations suggest that the switching activity of C. krusei induces changes to its biological properties and susceptibility towards CHX.
    Matched MeSH terms: Chlorhexidine/pharmacology
  6. Dua K, Sheshala R, Al-Waeli HA, Gupta G, Chellappan DK
    Recent Pat Drug Deliv Formul, 2015;9(3):257-61.
    PMID: 26051152
    Natural products like plants and its components have been in use for treatment and cure of diseases all around the globe from ancient times much before the discovery of the current modern drugs. These substances from the nature are well known to contain components which have therapeutic properties and can also behave as precursors for the synthesis of potential drugs. The beneficial results from herbal drugs are well reported where their popularity in usage has increased across the globe. Subsequently developing countries are now recognizing the many positive advantages from their use which has engaged the expansion of R & D from herbal research. The flow on effect from this expansion has increased the awareness to develop new herbal products and the processes, throughout the entire world. Mouth washes and mouth rinses which have plant oils, plant components or extracts have generated particular attention. High prevalence of gingival inflammation and periodontal diseases, suggests majority of the patients practice inadequate plaque control. Of the currently available mouthwashes in the market, Chlorhexidine gluconate (CHX) has been investigated on a larger scale with much detail. CHX is associated with side effects like staining of teeth when used daily as well as the bitter taste of the mouthwash which leads to patient incompliance. The present research encompasses the antibacterial activity of extemporaneously prepared herbal mouthwash using natural herbs and therefore allows for the potential commercialization with in the herbal and pharmaceutical industries. Also, the present research article reviewed details of various existing patents of herbal mouthwashes which shows the trend of existing market and significance of emerging mouthwashes in both pharmaceutical and herbal industries. The antimicrobial activity of prepared mouthwashes was found to be effective against various strains of bacteria. It also suggests that the prepared herbal mouthwashes may provide an alternative to those containing chemical entities, with enhanced antimicrobial properties and better patient compliance.
    Matched MeSH terms: Chlorhexidine/pharmacology
  7. Leitgeb J, Schuster R, Yee BN, Chee PF, Harnoss JC, Starzengruber P, et al.
    BMC Surg, 2015 Jul 04;15:81.
    PMID: 26141495 DOI: 10.1186/s12893-015-0058-5
    BACKGROUND: A surgical glove will protect surgeons and patients only if the glove's integrity remains intact. However, several studies have demonstrated that undetected micro-perforations of surgical gloves are common. Because of the possibility of surgical glove puncture, an antimicrobial surgical glove was developed. The aim of this laboratory based experimental study was to assess the antibacterial efficacy of the interior chlorhexidine-gluconate (CHG)-coat of an antimicrobial synthetic polyisoprene surgical glove by using a standardized microbiological challenge.

    METHODS: Sixteen healthy adult participants donned one antimicrobial surgical glove and one non-antimicrobial surgical glove randomly allocated to their dominant and non-dominant hand following a crossover design. During a 2-h wear time, participants performed standardized finger and hand movements. Thereafter, the interior surface of excised fingers of the removed gloves was challenged with 8.00 log10 cfu/mL S. aureus (ATCC 6538) or K. pneumoniae (ATCC 4352), respectively. The main outcome measure was the viable mean log10 cfu counts of the two glove groups after 5 min contact with the interior glove's surface.

    RESULTS: When comparing an antimicrobial glove against an untreated reference glove after 2-h simulated use wear-time, a mean reduction factor of 6.24 log10 (S. aureus) and 6.22 log10 (K. pneumoniae) was achieved after 5 min contact.

    CONCLUSION: These results demonstrate that wearing antibacterial gloves on hands does not negatively impact their antibacterial activity after 2-h of wear. This may have a potential benefit for patient safety in case of glove puncture during surgical procedures.

    Matched MeSH terms: Chlorhexidine/pharmacology
  8. Vamsi K, Siddiqui F
    J Contemp Dent Pract, 2018 Jul 01;19(7):824-829.
    PMID: 30066686
    AIM: To study the antimicrobial effect of chlorhexidine diacetate (CHX-D)-modified type II glass ionomer cement (GIC) against the two predominant deep caries microorganisms, namely Lactobacillus casei and Actinomyces viscosus.

    MATERIALS AND METHODS: An experimental GIC (ex-GIC) was prepared by mixing CHX-D powder with the powder of type II GIC to obtain 1% (w/w) concentration of CHX-D in the GIC. Antibacterial activity of this ex-GIC was tested against L. casei and A. viscosus using the agar diffusion method. The ex-GIC specimens were tested in their unset and set forms for each bacterium. For the unset group, specimens were placed in each agar plate immediately after manipulation and for the set group, specimens were placed in each agar plate, 1 hour after manipulation. The inhibition zones on the agar plate were recorded in millimeters immediately on placement of the specimen in the agar plate and after 48 hours. The reading was recorded and statistically analyzed for significant difference.

    RESULTS: Mann-Whitney U test showed statistically significant difference in the inhibition zones produced by ex-GIC against L. casei and A. viscosus when both were compared in unset (p-value = 0.002) and set (p-value = 0.031) groups. For both the groups, the zone of inhibition against L. casei was greater. Though the unset group recorded wider zone of inhibition, the difference was not significant when compared with the respective set group. This was true for both the bacterial groups.

    CONCLUSION: The 1% CHX-D-modified type II GIC showed antibacterial property against L. casei and A. viscosus and significantly higher activity against L. casei.

    CLINICAL SIGNIFICANCE: Addition of 1% CHX-D to type II GIC showed evidence of antibacterial activity against organisms found in deep carious lesion and therefore may exhibit superior antimicrobial efficiency when used as an intermediate therapeutic restoration in deep cavities.

    Matched MeSH terms: Chlorhexidine/pharmacology*
  9. Anwar A, Yi YP, Fatima I, Khan KM, Siddiqui R, Khan NA, et al.
    Parasitol Res, 2020 Jun;119(6):1943-1954.
    PMID: 32385711 DOI: 10.1007/s00436-020-06694-4
    Acanthamoeba causes diseases such as Acanthamoeba keratitis (AK) which leads to permanent blindness and granulomatous Acanthamoeba encephalitis (GAE) where there is formation of granulomas in the brain. Current treatments such as chlorhexidine, diamidines, and azoles either exhibit undesirable side effects or require immediate and prolonged treatment for the drug to be effective or prevent relapse. Previously, antifungal drugs amphotericin B, nystatin, and fluconazole-conjugated silver with nanoparticles have shown significantly increased activity against Acanthamoeba castellanii. In this study, two functionally diverse tetrazoles were synthesized, namely 5-(3-4-dimethoxyphenyl)-1H-tetrazole and 1-(3-methoxyphenyl)-5-phenoxy-1H-tetrazole, denoted by T1 and T2 respectively. These compounds were evaluated for anti-Acanthamoeba effects at different concentrations ranging from 5 to 50 μM. Furthermore, these compounds were conjugated with silver nanoparticles (AgNPs) to enhance their efficacy. Particle size analysis showed that T1-AgNPs and T2-AgNPs had an average size of 52 and 70 nm respectively. After the successful synthesis and characterization of tetrazoles and tetrazole-conjugated AgNPs, they were subjected to anti-Acanthamoeba studies. Amoebicidal assay showed that at concentration 10 μM and above, T2 showed promising antiamoebic activities between the two compounds while encystation and excystation assays reveal that both T1 and T2 have inhibited differentiation activity against Acanthamoeba castellanii. Conjugation of T1 and T2 to AgNP also increased efficacy of tetrazoles as anti-Acanthamoeba agents. This may be due to the increased bioavailability as AgNP allows better delivery of treatment compounds to A. castellanii. Human cell cytotoxicity assay revealed that tetrazoles and AgNPs are significantly less toxic towards human cells compared with chlorhexidine which is known to cause undesirable side effects. Cytopathogenicity assay also revealed that T2 conjugated with AgNPs significantly reduced cytopathogenicity of A. castellanii compared with T2 alone, suggesting that T2-conjugated AgNP is an effective and safe anti-Acanthamoeba agent. The use of a synthetic azole compound conjugated with AgNPs can be an alternative strategy for drug development against A. castellanii. However, mechanistic and in vivo studies are needed to explore further translational values.
    Matched MeSH terms: Chlorhexidine/pharmacology
  10. Fathilah AR, Himratul-Aznita WH, Fatheen AR, Suriani KR
    J Dent, 2012 Jul;40(7):609-15.
    PMID: 22521700 DOI: 10.1016/j.jdent.2012.04.003
    C. tropicalis and C. krusei have emerged as virulent species causing oral infections. Both have developed resistance to commonly prescribed azole antifungal agents.
    Matched MeSH terms: Chlorhexidine/pharmacology
  11. Nor A'shimi MH, Alattraqchi AG, Mohd Rani F, A Rahman NI, Ismail S, Abdullah FH, et al.
    J Infect Dev Ctries, 2019 07 31;13(7):626-633.
    PMID: 32065820 DOI: 10.3855/jidc.11455
    INTRODUCTION: Acinetobacter baumannii is a Gram-negative nosocomial pathogen that has the capacity to develop resistance to all classes of antimicrobial compounds. However, very little is known regarding its susceptibility to biocides (antiseptics and disinfectants) and capacity to form biofilms, particularly for Malaysian isolates.

    AIM: To determine the susceptibility of A. baumannii isolates to commonly-used biocides, investigate their biofilm-forming capacities and the prevalence of biocide resistance and biofilm-associated genes.

    METHODOLOGY: . The minimum inhibitory concentration (MIC) values of 100 A. baumannii hospital isolates from Terengganu, Malaysia, towards the biocides benzalkonium chloride (BZK), benzethonium chloride (BZT) and chlorhexidine digluconate (CLX), were determined by broth microdilution. The isolates were also examined for their ability to form biofilms in 96-well microplates. The prevalence of biocide resistance genes qacA, qacE and qacDE1 and the biofilm-associated genes bap and abaI were determined by polymerase chain reaction (PCR).

    RESULTS: Majority of the A. baumannii isolates (43%) showed higher MIC values (> 50 µg/mL) for CLX than for BZK (5% for MIC > 50 µg/mL) and BZT (9% for MIC > 50 µg/mL). The qacDE1 gene was predominant (63%) followed by qacE (28%) whereas no isolate was found harbouring qacA. All isolates were positive for the bap and abaI genes although the biofilm-forming capacity varied among the isolates.

    CONCLUSION: The Terengganu A. baumannii isolates showed higher prevalence of qacDE1 compared to qacE although no correlation was found with the biocides' MIC values. No correlation was also observed between the isolates' biofilm-forming capacity and the MIC values for the biocides.

    Matched MeSH terms: Chlorhexidine/pharmacology
  12. Siddiqui R, Aqeel Y, Khan NA
    Antimicrob Agents Chemother, 2016 11;60(11):6441-6450.
    PMID: 27600042 DOI: 10.1128/AAC.00686-16
    For the past several decades, there has been little improvement in the morbidity and mortality associated with Acanthamoeba keratitis and Acanthamoeba encephalitis, respectively. The discovery of a plethora of antiacanthamoebic compounds has not yielded effective marketed chemotherapeutics. The rate of development of novel antiacanthamoebic chemotherapies of translational value and the lack of interest of the pharmaceutical industry in developing such chemotherapies have been disappointing. On the other hand, the market for contact lenses/contact lens disinfectants is a multi-billion-dollar industry and has been successful and profitable. A better understanding of drugs, their targets, and mechanisms of action will facilitate the development of more-effective chemotherapies. Here, we review the progress toward phenotypic drug discovery, emphasizing the shortcomings of useable therapies.
    Matched MeSH terms: Chlorhexidine/pharmacology
  13. Ghasemzadeh-Moghaddam H, van Belkum A, Hamat RA, van Wamel W, Neela V
    Microb Drug Resist, 2014 Oct;20(5):472-7.
    PMID: 24841796 DOI: 10.1089/mdr.2013.0222
    The prevalence and spread of mupirocin and antiseptic resistance among colonizing and infectious Staphylococcus aureus were determined. S. aureus isolated from anterior nares and infection sites of patients hospitalized in the largest tertiary care referral hospital in Malaysia was investigated for mupirocin and antiseptic susceptibility testing, and for PCR detection of mupA, qacA/B, and smr genes. Twelve isolates showed resistance to mupirocin by disk diffusion, of which 10 (3.8%) harbored the mupA gene. Minimum inhibitory concentrations (MICs) ranged from 64 to 768 μg/ml for mupA positive and below 46 μg/ml for negative isolates. The mupA was more common among ST239 isolates (70%). The qacA/B was carried in 67 out of 95 methicillin-resistant Staphylococcus aureus (MRSA) (70.5%) and 3 out of 164 methicillin-susceptible Staphylococcus aureus (MSSA) (1.8%), while smr was carried in 6 out of 95 MRSA (6.3%) strains. MICs ranged from 3.9 to 15.6 μg/ml for benzethonium chloride (BTC) and benzalkonium chloride (BKC), and from 10.3 to 20.7 μg/ml for chlorhexidine digluconate (CHG). Isolates with qacA/B and smr or qacA/B alone showed higher MIC (20.7 μg/ml for CHG and 15.6 μg/ml for BTC and BKC) than the isolates that lacked antiseptic resistance genes (10.3 μg/ml for CHG and 3.9 μg/ml for BTC and BKC). In 16 cases, ST239 was isolated from the infection site and the nares simultaneously, and shared identical resistance patterns (qacAB or qacAB+smr), suggesting possible endogenous infection. Spread of low-level mupirocin resistance expressing ST239 MRSA and high-level resistance expressing emerging ST1, co-existing with antiseptic-resistant genes showing elevated MICs, should be monitored for effective infection control.
    Matched MeSH terms: Chlorhexidine/pharmacology
  14. Chua EG, Parolia A, Ahlawat P, Pau A, Amalraj FD
    BMC Oral Health, 2014;14:53.
    PMID: 24886335 DOI: 10.1186/1472-6831-14-53
    To investigate the antifungal activity of propolis, triple antibiotic paste (TAP), 2% chlorhexidine gel and calcium hydroxide with propylene glycol on Candida albicans-infected root canal dentinal tubules at two different depths (200 μm and 400 μm) and two time intervals (day 1 and 7).
    Matched MeSH terms: Chlorhexidine/pharmacology
  15. Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V
    J. Hosp. Infect., 2012 Jul;81(3):206-8.
    PMID: 22633074 DOI: 10.1016/j.jhin.2012.04.015
    The minimum inhibitory concentrations (MICs) of 60 meticillin-resistant Staphylococcus aureus (MRSA) isolates from Malaysia to three antiseptic agents - benzalkonium chloride (BZT), benzethonium chloride (BAC) and chlorhexidine digluconate (CHG) - were determined. All isolates had MICs ranging from 0.5 to 2 mg/L. Antiseptic resistance genes qacA/B and smr were detected in 83.3% and 1.6% of the isolates, respectively. Carriage of qacA/B correlated with reduced susceptibility to CHG and BAC. This is the first report of the prevalence of qacA/B and smr gene carriage in Malaysian MRSA isolates, with a high frequency of qacA/B carriage. The presence of these antiseptic resistance genes and associated reduced susceptibility to antiseptic agents may have clinical implications.
    Matched MeSH terms: Chlorhexidine/pharmacology
  16. Sushma R, Sathe TT, Farias A, Sanyal PK, Kiran S
    Ann Afr Med, 2017 Jan-Mar;16(1):6-12.
    PMID: 28300045 DOI: 10.4103/aam.aam_43_16
    BACKGROUND: Candida albicans is one of the microorganisms which harbor the oral cavity, especially in elderly. However, the incidence of existence of this increases in patients using removable dental prosthesis. There is therefore a need to test the anticandidal efficacy of these cost-effective, easily available products to be used as routine denture cleansers.
    AIM AND OBJECTIVES: (1) To evaluate antifungal properties of triphala churna on the heat cure denture base material. (2) To evaluate the antifungal effect of chlorhexidine gluconate on the heat cure denture base material. (3) To compare the antifungal effect of triphala churna and chlorhexidine gluconate with a control. (4) To evaluate which among triphala churna and chlorhexidine gluconate has a better antifungal property on the heat cure denture base material.
    MATERIALS AND METHODS: Study population consisted of sixty dentures wearers from those attending the Outpatient Department of Prosthodontics of the School of Dentistry, Krishna Institute of Medical Sciences Deemed University, Karad. Swabs were collected from the dentures before and after the use of triphala and chlorhexidine. The swabs were cultured on Sabouraud dextrose agar and the total Candida counts were determined.
    CONCLUSION: Triphala as an antifungal is shown to have more efficacy than the conventional chlorhexidine mouthwash. Résumé Arrière-plan: Candida albicans est l'un des micro-organismes qui abritent la cavité buccale surtout chez les personnes âgées. Cependant, l'incidence de l'existence de cette augmentation chez les patients utilisant des prothèses dentaires amovibles. Il est donc nécessaire de tester l'efficacité anticancédique de ces produits rentables et faciles à utiliser pour être utilisés comme nettoyants de routine pour prothèses dentaires. Buts et Objectifs: (1) Évaluer les propriétés antifongiques de Triphala churna sur le matériau de base de la prothèse thermo-durcissable. (2) Évaluer l'effet antifongique du gluconate de chlorhexidine sur le matériau de base de la prothèse thermo-durcissable. (3) Comparer l'effet antifongique de Triphala churna et du gluconate de chlorhexidine avec un témoin. (4) Évaluer lequel parmi Triphala churna et le gluconate de chlorhexidine a une meilleure propriété antifongique sur le matériel de base de la prothèse de durcissement à chaud. Matériaux et Méthode: La population de l'étude était constituée de soixante porteurs de prothèses dentaires de ceux qui fréquentaient le Département de Prosthodontie de l'École des Sciences Dentaires de l'Institut Krishna des Sciences Médicales de l'Université de Karad. Des prélèvements ont été effectués sur les prothèses avant et après l'utilisation de Triphala et de chlorhexidine. On a cultivé les écouvillons sur de l'agar Sabouraud dextrose et on a déterminé le nombre total de candida.
    CONCLUSION: Triphala comme un anti fongique est démontré pour avoir plus d'efficacité que le lavage de la bouche classique chlorhexidine.
    Matched MeSH terms: Chlorhexidine/pharmacology
  17. Abjani F, Khan NA, Jung SY, Siddiqui R
    Exp Parasitol, 2017 Dec;183:187-193.
    PMID: 28919333 DOI: 10.1016/j.exppara.2017.09.007
    The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept®, AO SEPT PLUS, OPTI-FREE® pure moist®, Renu® fresh™, FreshKon® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These findings revealed that targeting cyst wall by using cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy against this devastating eye infection.
    Matched MeSH terms: Chlorhexidine/pharmacology*
  18. Anwar A, Soomaroo A, Anwar A, Siddiqui R, Khan NA
    Exp Parasitol, 2020 Aug;215:107915.
    PMID: 32461112 DOI: 10.1016/j.exppara.2020.107915
    Acanthamoeba castellanii is an opportunistic protozoan responsible for serious human infections including Acanthamoeba keratitis and granulomatous amoebic encephalitis. Despite advances in antimicrobial therapy and supportive care, infections due to Acanthamoeba are a major public concern. Current methods of treatment are not fully effective against both the trophozoite and cyst forms of A. castellanii and are often associated with severe adverse effects, host cell cytotoxicity and recurrence of infection. Therefore, there is an urgent need to develop new therapeutic approaches for the treatment and management of Acanthamoebic infections. Repurposing of clinically approved drugs is a viable avenue for exploration and is particularly useful for neglected and rare diseases where there is limited interest by pharmaceutical companies. Nanotechnology-based drug delivery systems offer promising approaches in the biomedical field, particularly in diagnosis and drug delivery. Herein, we conjugated an antihyperglycemic drug, metformin with silver nanoparticles and assessed its anti-acanthamoebic properties. Characterization by ultraviolet-visible spectrophotometry and atomic force microscopy showed successful formation of metformin-coated silver nanoparticles. Amoebicidal and amoebistatic assays revealed that metformin-coated silver nanoparticles reduced the viability and inhibited the growth of A. castellanii significantly more than metformin and silver nanoparticles alone at both 5 and 10 μM after 24 h incubation. Metformin-coated silver nanoparticles also blocked encystation and inhibited the excystation in Acanthamoeba after 72 h incubation. Overall, the conjugation of metformin with silver nanoparticles was found to enhance its antiamoebic effects against A. castellanii. Furthermore, the pretreatment of A. castellanii with metformin and metformin-coated silver nanoparticles for 2 h also reduced the amoebae-mediated host cell cytotoxicity after 24 h incubation from 73% to 10% at 10 μM, indicating that the drug-conjugated silver nanoparticles confer protection to human cells. These findings suggest that metformin-coated silver nanoparticles hold promise in the improved treatment and management of Acanthamoeba infections.
    Matched MeSH terms: Chlorhexidine/pharmacology
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links