Displaying all 6 publications

Abstract:
Sort:
  1. Aminuddin BS
    Med J Malaysia, 2004 May;59 Suppl B:3-4.
    PMID: 15468790
    Management of severe tracheal anomalies remains a clinical challenge. Tissue engineering offers new hope in trachea reconstruction surgery. However to date no optimal technique achieved in the formation of human or animal trachea. The main problem lies on the biomaterial used and the complex city of forming trachea in vivo. This study was aimed at creating tissue-engineered trachea cartilage from easily accessible human and animal nasal septum cartilage using internal scaffold and biodegradable human and animal fibrin.
    Matched MeSH terms: Chondrocytes/pathology
  2. Kapitonova MY, Mansor O
    Malays J Pathol, 2003 Jun;25(1):15-27.
    PMID: 16196374
    OBJECTIVE: To determine in situ using TEM the balance of apoptosis and necrosis in the articular cartilage of patients with inflammatory (rheumatoid arthritis and seronegative spondyloarthritis) and degenerative (osteoarthritis) joint diseases and to establish possible correlation between the cell death rate and the matrix vesicles formation.
    METHODS: Cartilage samples of the knee joint were obtained from patients with rheumatoid arthritis (RA, 18 cases), osteoarthritis (OA, 22 cases), Reiter's disease (RD, 9 cases), peripheral form of the ankylosing spondyloarthritis (AS, 6 cases) and psoriatic arthritis (PA, 6 cases) during arthroscopy or knee surgery. Normal samples taken from autopsy cases without a history of joint diseases were used as control. Samples were processed for TEM with subsequent semi-quantitative estimation of the cell death rate in the superficial, middle and deep zone of non-calcified articular cartilage, and computer-aided ultramorphometric evaluation of the matrix vesicles of different types.
    RESULTS: Both apoptotic and necrotic cell death could be identified in the cartilage of patients with inflammatory joint diseases, including seronegative spondyloarthritides and degenerative arthropathies. Apoptosis dominated over necrosis in all examined arthritides, including RA patients in which necrosis of the chondrocyte was the most frequent among arthropathies, while the highest apoptotic cell death rate was discovered in OA in which it correlated with the volume and numeric density of the matrix vesicles. These data provide evidence that apoptosis may contribute to the cartilage breakdown not only in RA and OA but also in the seronegative spondyloarthritides, which had a significantly higher apoptotic rate than the normal cartilage.
    Matched MeSH terms: Chondrocytes/pathology*
  3. Chong PP, Panjavarnam P, Ahmad WNHW, Chan CK, Abbas AA, Merican AM, et al.
    Clin Biomech (Bristol, Avon), 2020 10;79:105178.
    PMID: 32988676 DOI: 10.1016/j.clinbiomech.2020.105178
    BACKGROUND: Cartilage damage, which can potentially lead to osteoarthritis, is a leading cause of morbidity in the elderly population. Chondrocytes are sensitive to mechanical stimuli and their matrix-protein synthesis may be altered when chondrocytes experience a variety of in vivo loadings. Therefore, a study was conducted to evaluate the biosynthesis of isolated osteoarthritic chondrocytes which subjected to compression with varying dynamic compressive strains and loading durations.

    METHODS: The proximal tibia was resected as a single osteochondral unit during total knee replacement from patients (N = 10). The osteoarthritic chondrocytes were isolated from the osteochondral units, and characterized using reverse transcriptase-polymerase chain reaction. The isolated osteoarthritic chondrocytes were cultured and embedded in agarose, and then subjected to 10% and 20% uniaxial dynamic compression up to 8-days using a bioreactor. The morphological features and changes in the osteoarthritic chondrocytes upon compression were evaluated using scanning electron microscopy. Safranin O was used to detect the presence of cartilage matrix proteoglycan expression while quantitative analysis was conducted by measuring type VI collagen using an immunohistochemistry and fluorescence intensity assay.

    FINDINGS: Gene expression analysis indicated that the isolated osteoarthritic chondrocytes expressed chondrocyte-specific markers, including BGN, CD90 and HSPG-2. Moreover, the compressed osteoarthritic chondrocytes showed a more intense and broader deposition of proteoglycan and type VI collagen than control. The expression of type VI collagen was directly proportional to the duration of compression in which 8-days compression was significantly higher than 4-days compression. The 20% compression showed significantly higher intensity compared to 10% compression in 4- and 8-days.

    INTERPRETATION: The biosynthetic activity of human chondrocytes from osteoarthritic joints can be enhanced using selected compression regimes.

    Matched MeSH terms: Chondrocytes/pathology*
  4. Sefat F, Youseffi M, Khaghani SA, Soon CF, Javid F
    Cytokine, 2016 07;83:118-126.
    PMID: 27108397 DOI: 10.1016/j.cyto.2016.04.008
    Articular cartilage is an avascular and flexible connective tissue found in joints. It produces a cushioning effect at the joints and provides low friction to protect the ends of the bones from wear and tear/damage. It has poor repair capacity and any injury can result pain and loss of mobility. Transforming growth factor-beta (TGF-β), a cytokine superfamily, regulates cell function, including differentiation and proliferation. Although the function of the TGF-βs in various cell types has been investigated, their function in cartilage repair is as yet not fully understood. The effect of TGF-β3 in biological regulation of primary chondrocyte was investigated in this work. TGF-β3 provided fibroblastic morphology to chondrocytes and therefore overall reduction in cell proliferation was observed. The length of the cells supplemented with TGF-β3 were larger than the cells without TGF-β3 treatment. This was caused by the fibroblast like cells (dedifferentiated chondrocytes) which occupied larger areas compared to cells without TGF-β3 addition. The healing process of the model wound closure assay of chondrocyte multilayer was slowed down by TGF-β3, and this cytokine negatively affected the strength of chondrocyte adhesion to the cell culture surface.
    Matched MeSH terms: Chondrocytes/pathology
  5. Samuel S, Ahmad RE, Ramasamy TS, Karunanithi P, Naveen SV, Kamarul T
    Platelets, 2019;30(1):66-74.
    PMID: 29090639 DOI: 10.1080/09537104.2017.1371287
    Platelet-rich concentrate (PRC), used in conjunction with other chondroinductive growth factors, have been shown to induce chondrogenesis of human mesenchymal stromal cells (hMSC) in pellet culture. However, pellet culture systems promote cell hypertrophy and the presence of other chondroinductive growth factors in the culture media used in previous studies obscures accurate determination of the effect of platelet itself in inducing chondrogenic differentiation. Hence, this study aimed to investigate the effect of PRC alone in enhancing the chondrogenic differentiation potential of human mesenchymal stromal cells (hMSC) encapsulated in three-dimensional alginate constructs. Cells encapsulated in alginate were cultured in serum-free medium supplemented with only 15% PRC. Scanning electron microscopy was used to determine the cell morphology. Chondrogenic molecular signature of hMSCs was determined by quantitative real-time PCR and verified at protein levels via immunohistochemistry and enzyme-linked immunosorbent assay. Results showed that the cells cultured in the presence of PRC for 24 days maintained a chondrocytic phenotype and demonstrated minimal upregulation of cartilaginous extracellular matrix (ECM) marker genes (SOX9, TNC, COL2, ACAN, COMP) and reduced expression of chondrocyte hypertrophy genes (Col X, Runx2) compared to the standard chondrogenic medium (p 
    Matched MeSH terms: Chondrocytes/pathology
  6. Chin KY, Pang KL
    Nutrients, 2017 Sep 26;9(10).
    PMID: 28954409 DOI: 10.3390/nu9101060
    Osteoarthritis is a major cause of morbidity among the elderly worldwide. It is a disease characterized by localized inflammation of the joint and destruction of cartilage, leading to loss of function. Impaired chondrocyte repair mechanisms, due to inflammation, oxidative stress and autophagy, play important roles in the pathogenesis of osteoarthritis. Olive and its derivatives, which possess anti-inflammatory, antioxidant and autophagy-enhancing activities, are suitable candidates for therapeutic interventions for osteoarthritis. This review aimed to summarize the current evidence on the effects of olive and its derivatives, on osteoarthritis and chondrocytes. The literature on animal and human studies has demonstrated a beneficial effect of olive and its derivatives on the progression of osteoarthritis. In vitro studies have suggested that the augmentation of autophagy (though sirtuin-1) and suppression of inflammation by olive polyphenols could contribute to the chondroprotective effects of olive polyphenols. More research and well-planned clinical trials are required to justify the use of olive-based treatment in osteoarthritis.
    Matched MeSH terms: Chondrocytes/pathology
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links