Displaying all 12 publications

  1. Su CX, Teng TT, Wong YS, Morad N, Rafatullah M
    Chemosphere, 2016 Mar;146:503-10.
    PMID: 26741557 DOI: 10.1016/j.chemosphere.2015.12.048
    A thermal degradation pathway of the decolourisation of Reactive Cibacron Blue F3GA (RCB) in aqueous solution through catalytic thermolysis is established. Catalytic thermolysis is suitable for the removal of dyes from wastewater as it breaks down the complex dye molecules instead of only transferring them into another phase. RCB is a reactive dye that consists of three main groups, namely anthraquinone, benzene and triazine groups. Through catalytic thermolysis, the bonds that hold the three groups together were effectively broken and at the same time, the complex molecules degraded to form simple molecules of lower molecular weight. The degradation pathway and products were characterized and determined through UV-Vis, FT-IR and GCMS analysis. RCB dye molecule was successfully broken down into simpler molecules, namely, benzene derivatives, amines and triazine. The addition of copper sulphate, CuSO4, as a catalyst, hastens the thermal degradation of RCB by aiding in the breakdown of large, complex molecules. At pH 2 and catalyst mass loading of 5 g/L, an optimum colour removal of 66.14% was observed. The degradation rate of RCB is well explained by first order kinetics model.
    Matched MeSH terms: Coloring Agents/analysis*
  2. Ahmad AA, Hameed BH, Ahmad AL
    J Hazard Mater, 2009 Oct 30;170(2-3):612-9.
    PMID: 19515487 DOI: 10.1016/j.jhazmat.2009.05.021
    The purpose of this work is to obtain optimal preparation conditions for activated carbons prepared from rattan sawdust (RSAC) for removal of disperse dye from aqueous solution. The RSAC was prepared by chemical activation with phosphoric acid using response surface methodology (RSM). RSM based on a three-variable central composite design was used to determine the effect of activation temperature (400-600 degrees C), activation time (1-3h) and H(3)PO(4):precursor (wt%) impregnation ratio (3:1-6:1) on C.I. Disperse Orange 30 (DO30) percentage removal and activated carbon yield were investigated. Based on the central composite design, quadratic model was developed to correlate the preparation variables to the two responses. The most influential factor on each experimental design responses was identified from the analysis of variance (ANOVA). The optimum conditions for preparation of RSAC, which were based on response surface and contour plots, were found as follows: temperature of 470 degrees C, activation time of 2h and 14min and chemical impregnation ratio of 4.45.
    Matched MeSH terms: Coloring Agents/analysis*
  3. Chai LK, Mohd-Tahir N, Hansen S, Hansen HC
    J. Environ. Qual., 2009 Apr 27;38(3):1160-9.
    PMID: 19398513 DOI: 10.2134/jeq2007.0644
    Preventive treatment with insecticides at high dosing rates before planting of a new crop- soil drenching- is a common practice in some tropical intensive cropping systems, which may increase the risk of leaching, soil functioning, and pesticide uptake in the next crop. The degradation rates and migration of acephate and chlorpyrifos and their primary metabolites, methamidophos and 3,5,6-trichloropyridinol (TCP), have been studied in clayey red yellow podzolic (Typic Paleudults), alluvial (Typic Udorthents), and red yellow podzolic soils (Typic Kandiudults) of Malaysia under field conditions. The initial concentrations of acephate and chlorpyrifos in topsoils were found to strongly depend on solar radiation. Both pesticides and their metabolites were detected in subsoils at the deepest sampling depth monitored (50 cm) and with maximum concentrations up to 2.3 mg kg(-1) at soil depths of 10 to 20 cm. Extraordinary high dissipation rates for weakly sorbed acephate was in part attributed to preferential flow which was activated due to the high moisture content of the soils, high precipitation and the presence of conducting macropores running from below the A horizons to at least 1 m, as seen from a dye tracer experiment. Transport of chlorpyrifos and TCP which both sorb strongly to soil organic matter was attributed to macropore transport with soil particles. The half-lives for acephate in topsoils were 0.4 to 2.6 d while substantially longer half-lives of between 12.6 and 19.8 d were observed for chlorpyrifos. The transport through preferential flow of strongly sorbed pesticides is of concern in the tropics.
    Matched MeSH terms: Coloring Agents/analysis
  4. Ahmad A, Razali MH, Mamat M, Mehamod FS, Anuar Mat Amin K
    Chemosphere, 2017 Feb;168:474-482.
    PMID: 27855344 DOI: 10.1016/j.chemosphere.2016.11.028
    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO2. Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO2 nanoparticles onto functionalized-CNTs loaded TiO2, with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium.
    Matched MeSH terms: Coloring Agents/analysis
  5. Lau YY, Wong YS, Ang TZ, Ong SA, Lutpi NA, Ho LN
    Environ Sci Pollut Res Int, 2018 Mar;25(7):7067-7075.
    PMID: 29275478 DOI: 10.1007/s11356-017-1069-9
    The theme of present research demonstrates performance of copper (II) sulfate (CuSO4) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO4. Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp2 carbon to form C-C of the sp3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k1 is 6.5224 whereas the degradation rate constant with catalyst, k2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.
    Matched MeSH terms: Coloring Agents/analysis*
  6. Wicaksono DH, Syazwani IN, Ratnarathorn N, Sadir S, Shahir S, Ruckthong L, et al.
    Bioanalysis, 2019 May;11(9):855-873.
    PMID: 31084195 DOI: 10.4155/bio-2018-0190
    Aim: Time-based microfluidic absorption sampling was proposed using cotton fiber-based device made in swab stick. The assay was optimized and compared with conventional pipetted drop sampling using the same device. Materials & methods: Reagents were integrated into cotton fiber device for assessing concentration of analytes by the colorimetric detection method through time-based absorption sampling microfluidic system. All assay parameters were first optimized using conventional pipette-based drop sampling. Results: The color intensity is linear in the relevant concentration range of the analytes. The LOD are 0.189 mM for glucose and 6.56 μM for nitrite, respectively. These values are better than conventional drop sampling. The fiber-containing swab itself functions as sampling, assay and calibration device. Conclusion: Microfluidic cotton fiber-based assay device was fabricated and can determine analyte concentration in artificial salivary samples, colorimetrically, by time-based absorption sampling without the need of complex equipments.
    Matched MeSH terms: Food Coloring Agents/analysis
  7. Samrot AV, Saigeetha S, Mun CY, Abirami S, Purohit K, Cypriyana PJJ, et al.
    Sci Rep, 2021 12 31;11(1):24511.
    PMID: 34972829 DOI: 10.1038/s41598-021-03328-2
    Latex, a milky substance found in a variety of plants which is a natural source of biologically active compounds. In this study, Latex was collected from raw Carica papaya and was characterized using UV-Vis, FTIR and GC-MS analyses. Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized, coated with C. papaya latex (PL-Sp) and characterized using UV-Vis, FT-IR, SEM-EDX, XRD, VSM and Zeta potential analyses. SPIONs and latex coated SPIONs (PL-Sp) were used in batch adsorption study for effective removal of Methylene blue (MB) dye, where (PL-Sp) removed MB dye effectively. Further the PL-Sp was used to produce a nanoconjugate loaded with curcumin and it was characterized using UV-Vis spectrophotometer, FT-IR, SEM-EDX, XRD, VSM and Zeta potential. It showed a sustained drug release pattern and also found to have good antibacterial and anticancer activity.
    Matched MeSH terms: Coloring Agents/analysis
  8. Tee HC, Lim PE, Seng CE, Mohd Nawi MA, Adnan R
    J Environ Manage, 2015 Jan 1;147:349-55.
    PMID: 25284799 DOI: 10.1016/j.jenvman.2014.09.025
    Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions.
    Matched MeSH terms: Coloring Agents/analysis
  9. Anezaki K, Kannan N, Nakano T
    Environ Sci Pollut Res Int, 2015 Oct;22(19):14478-88.
    PMID: 24809497 DOI: 10.1007/s11356-014-2985-6
    This study reports the concentrations and congener partners of polychlorinated biphenyls (PCBs) in commercially available paints. Polycyclic-type pigments containing dioxazine violet (pigment violet (PV) 23, PV37) and diketopyrrolopyrrole (PR254, PR255) were found to contain PCB-56, PCB-77, PCB-40, PCB-5, and PCB-12, and PCB-6, PCB-13, and PCB-15, respectively, as major congeners. Dioxazine violet is contaminated with by-products during synthesis from o-dichlorobenzene, which is used as a solvent during synthesis, and diketopyrrolopyrrole is contaminated with by-products during synthesis from p-chlorobenzonitrile. The concentration of PCBs in paint containing PV23 or PV37 was 0.050-29 mg/kg, and toxic equivalency (TEQ) values ranged 1.1-160 pg-TEQ/g. The concentration of PCBs in paint containing PR254 or PR255 was 0.0019-2.4 mg/kg. Naphthol AS is an azo-type pigment, and PCB-52 was detected in paint containing pigment red (PR) 9 with 2,5-dichloroaniline as its source. PCB-146, PCB-149, and PCB-153 were identified from paint containing PR112 produced from 2,4,5-trichloroaniline, as major congeners. These congeners have chlorine positions similar to aniline, indicating that these congeners are by-products obtained during the synthesis of pigments. The concentrations of PCBs in paints containing PR9 and PR112 were 0.0042-0.43 and 0.0044-3.8 mg/kg, respectively. The corresponding TEQ for PR112 was 0.0039-8.6 pg-TEQ/g.
    Matched MeSH terms: Coloring Agents/analysis*
  10. Irfan M, Usman M, Mansha A, Rasool N, Ibrahim M, Rana UA, et al.
    ScientificWorldJournal, 2014;2014:540975.
    PMID: 25243216 DOI: 10.1155/2014/540975
    The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB). In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG), enthalpy (ΔH), and the entropy (ΔS) of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔG p and ΔG b).
    Matched MeSH terms: Coloring Agents/analysis*
  11. Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z
    Environ Sci Pollut Res Int, 2013 Jul;20(7):5056-66.
    PMID: 23334551 DOI: 10.1007/s11356-013-1476-5
    Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV-Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1% w/v, glycerol concentration of 0.1% v/v, and inoculum density of 2.5% v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98% was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV-Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
    Matched MeSH terms: Coloring Agents/analysis
  12. Fazlina N, Maha A, Jamal R, Zarina AL, Cheong SK, Hamidah H, et al.
    Hematology, 2007 Feb;12(1):33-7.
    PMID: 17364990
    The expression of the multidrug resistance (MDR) proteins may influence the outcome of treatment in patients with acute leukemia. The aim of this study was to determine the IC50 of cytotoxic drugs (cytosine arabinoside, ara-C and daunorubicin, dnr) using the in vitro 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)2H-tetrazolium, inner salt (MTS) assay method. A total of 82 newly diagnosed acute leukemia cases (43 adult myeloid leukaemia, AML cases and 39 acute lymphoblastic leukaemia, ALL cases) and 16 relapsed cases (8 AML cases and 8 ALL cases) were studied. The MTS assay was performed using two cytotoxic drugs, dnr and ara-C. Cells were incubated with different concentrations of drugs for 4 days and the IC50 was extrapolated from the viability curve. In newly diagnosed cases, we found that childhood ALL samples showed higher IC50 values of dnr (0.040 +/- 2.320) compared to adult AML samples (0.021 +/- 0.158). In contrast, newly diagnosed adult AML samples showed higher IC50 values of ara-C (0.157 +/- 0.529) compared to childhood ALL samples (0.100 +/- 2.350). In relapsed cases, two samples of childhood ALL showed IC50 values of dnr (0.910 +/- 1.760) and ara-C (1.310 +/- 2.390), which was higher compared to childhood AML samples (0.129 +/- 0.214 and 0.210 +/- 0.003, respectively). However, there was no correlation between IC50 values of these drugs tested with clinical outcome. In conclusion, we found that MTS assay is an easy, rapid and non laborious method to study in vitro drug resistance in acute leukaemia cases.
    Matched MeSH terms: Coloring Agents/analysis
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links