Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Hilyatihanina Zazali, Wan Ainun Mior Othman
    Sains Malaysiana, 2012;41:907-910.
    In this paper, we presented a new key exchange method based on decomposition problem for elliptic curve cryptography. We showed that our key exchange method was not only an alternative method for designing keys in cryptography, but it also has improved security condition from the previous key exchange based on decomposition problem over noncommutative groups. We proposed elliptic an curve cryptography to be the new platform for our key exchange protocol and showed how it was implemented. The security of our protocol was based on discrete logarithm problem, which was not infeasible and strictly difficult to retrieve in elliptic curve cryptography without any prior knowledge.
    Matched MeSH terms: Computer Security
  2. Tan CH, Teh YW
    J Med Syst, 2013 Aug;37(4):9950.
    PMID: 23709190 DOI: 10.1007/s10916-013-9950-7
    The main obstacles in mass adoption of cloud computing for database operations in healthcare organization are the data security and privacy issues. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to actual data for diagnostic and remediation purposes. The proposed mechanisms utilized the hypothetical data from TPC-H benchmark, to achieve 2 objectives. First, the underlying hardware performance and consistency is monitored via a control system, which is constructed using TPC-H queries. Second, the mechanism to construct stress-testing scenario is envisaged in the host, using a single or combination of TPC-H queries, so that the resource threshold point can be verified, if the virtual machine is still capable of serving critical transactions at this constraining juncture. This threshold point uses server run queue size as input parameter, and it serves 2 purposes: It provides the boundary threshold to the control system, so that periodic learning of the synthetic data sets for performance evaluation does not reach the host's constraint level. Secondly, when the host undergoes hardware change, stress-testing scenarios are simulated in the host by loading up to this resource threshold level, for subsequent response time verification from real and critical transactions.
    Matched MeSH terms: Computer Security*
  3. Usama M, Zakaria N
    PLoS ONE, 2017;12(1):e0168207.
    PMID: 28072850 DOI: 10.1371/journal.pone.0168207
    Data compression and encryption are key components of commonly deployed platforms such as Hadoop. Numerous data compression and encryption tools are presently available on such platforms and the tools are characteristically applied in sequence, i.e., compression followed by encryption or encryption followed by compression. This paper focuses on the open-source Hadoop framework and proposes a data storage method that efficiently couples data compression with encryption. A simultaneous compression and encryption scheme is introduced that addresses an important implementation issue of source coding based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite precision of real numbers that result from their long products. The approach proposed here solves the implementation issue by removing fractional components that are generated by the long products of real numbers. Moreover, it incorporates a stealth key that performs a cyclic shift in PWLM without compromising compression capabilities. In addition, the proposed approach implements a masking pseudorandom keystream that enhances encryption quality. The proposed algorithm demonstrated a congruent fit within the Hadoop framework, providing robust encryption security and compression.
    Matched MeSH terms: Computer Security*
  4. Mohamed Shakeel P, Baskar S, Sarma Dhulipala VR, Mishra S, Jaber MM
    J Med Syst, 2018 Aug 31;42(10):186.
    PMID: 30171378 DOI: 10.1007/s10916-018-1045-z
    In the recent past, Internet of Things (IoT) plays a significant role in different applications such as health care, industrial sector, defense and research etc.… It provides effective framework in maintaining the security, privacy and reliability of the information in internet environment. Among various applications as mentioned health care place a major role, because security, privacy and reliability of the medical information is maintained in an effective way. Even though, IoT provides the effective protocols for maintaining the information, several intermediate attacks and intruders trying to access the health information which in turn reduce the privacy, security and reliability of the entire health care system in internet environment. As a result and to solve the issues, in this research Learning based Deep-Q-Networks has been introduced for reducing the malware attacks while managing the health information. This method examines the medical information in different layers according to the Q-learning concept which helps to minimize the intermediate attacks with less complexity. The efficiency of the system has been evaluated with the help of experimental results and discussions.
    Matched MeSH terms: Computer Security*
  5. Ranak MSAN, Azad S, Nor NNHBM, Zamli KZ
    PLoS ONE, 2017;12(10):e0186940.
    PMID: 29084262 DOI: 10.1371/journal.pone.0186940
    Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.
    Matched MeSH terms: Computer Security/utilization*
  6. Alhaj TA, Siraj MM, Zainal A, Elshoush HT, Elhaj F
    PLoS ONE, 2016;11(11):e0166017.
    PMID: 27893821 DOI: 10.1371/journal.pone.0166017
    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset.
    Matched MeSH terms: Computer Security*
  7. Alizadeh M, Zamani M, Baharun S, Abdul Manaf A, Sakurai K, Anada H, et al.
    PLoS ONE, 2015;10(11):e0142716.
    PMID: 26580963 DOI: 10.1371/journal.pone.0142716
    Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes' participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.'s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.'s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic.
    Matched MeSH terms: Computer Security*
  8. Ho PF, Kam YH, Wee MC, Chong YN, Por LY
    ScientificWorldJournal, 2014;2014:838623.
    PMID: 24991649 DOI: 10.1155/2014/838623
    Traditionally, picture-based password systems employ password objects (pictures/icons/symbols) as input during an authentication session, thus making them vulnerable to "shoulder-surfing" attack because the visual interface by function is easily observed by others. Recent software-based approaches attempt to minimize this threat by requiring users to enter their passwords indirectly by performing certain mental tasks to derive the indirect password, thus concealing the user's actual password. However, weaknesses in the positioning of distracter and password objects introduce usability and security issues. In this paper, a new method, which conceals information about the password objects as much as possible, is proposed. Besides concealing the password objects and the number of password objects, the proposed method allows both password and distracter objects to be used as the challenge set's input. The correctly entered password appears to be random and can only be derived with the knowledge of the full set of password objects. Therefore, it would be difficult for a shoulder-surfing adversary to identify the user's actual password. Simulation results indicate that the correct input object and its location are random for each challenge set, thus preventing frequency of occurrence analysis attack. User study results show that the proposed method is able to prevent shoulder-surfing attack.
    Matched MeSH terms: Computer Security/standards*
  9. Mat Kiah ML, Al-Bakri SH, Zaidan AA, Zaidan BB, Hussain M
    J Med Syst, 2014 Oct;38(10):133.
    PMID: 25199651 DOI: 10.1007/s10916-014-0133-y
    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.
    Matched MeSH terms: Computer Security*
  10. Sookhak M, Akhundzada A, Sookhak A, Eslaminejad M, Gani A, Khurram Khan M, et al.
    PLoS ONE, 2015;10(1):e0115324.
    PMID: 25602616 DOI: 10.1371/journal.pone.0115324
    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols.
    Matched MeSH terms: Computer Security*
  11. Khor HL, Liew SC, Zain JM
    J Digit Imaging, 2017 Jun;30(3):328-349.
    PMID: 28050716 DOI: 10.1007/s10278-016-9930-9
    Tampering on medical image will lead to wrong diagnosis and treatment, which is life-threatening; therefore, digital watermarking on medical image was introduced to protect medical image from tampering. Medical images are divided into region of interest (ROI) and region of non-interest (RONI). ROI is an area that has a significant impact on diagnosis, whereas RONI has less or no significance in diagnosis. This paper has proposed ROI-based tamper detection and recovery watermarking scheme (ROI-DR) that embeds ROI bit information into RONI least significant bits, which will be extracted later for authentication and recovery process. The experiment result has shown that the ROI-DR has achieved a good result in imperceptibility with peak signal-to-noise ratio (PSNR) values approximately 48 dB, it is robust against various kinds of tampering, and the tampered ROI was able to recover to its original form. Lastly, a comparative table with the previous research (TALLOR and TALLOR-RS watermarking schemes) has been derived, where these three watermarking schemes were tested under the same testing conditions and environment. The experiment result has shown that ROI-DR has achieved speed-up factors of 22.55 and 26.65 in relative to TALLOR and TALLOR-RS watermarking schemes, respectively.
    Matched MeSH terms: Computer Security*
  12. Aldeen YA, Salleh M, Aljeroudi Y
    J Biomed Inform, 2016 08;62:107-16.
    PMID: 27369566 DOI: 10.1016/j.jbi.2016.06.011
    Cloud computing (CC) is a magnificent service-based delivery with gigantic computer processing power and data storage across connected communications channels. It imparted overwhelming technological impetus in the internet (web) mediated IT industry, where users can easily share private data for further analysis and mining. Furthermore, user affable CC services enable to deploy sundry applications economically. Meanwhile, simple data sharing impelled various phishing attacks and malware assisted security threats. Some privacy sensitive applications like health services on cloud that are built with several economic and operational benefits necessitate enhanced security. Thus, absolute cyberspace security and mitigation against phishing blitz became mandatory to protect overall data privacy. Typically, diverse applications datasets are anonymized with better privacy to owners without providing all secrecy requirements to the newly added records. Some proposed techniques emphasized this issue by re-anonymizing the datasets from the scratch. The utmost privacy protection over incremental datasets on CC is far from being achieved. Certainly, the distribution of huge datasets volume across multiple storage nodes limits the privacy preservation. In this view, we propose a new anonymization technique to attain better privacy protection with high data utility over distributed and incremental datasets on CC. The proficiency of data privacy preservation and improved confidentiality requirements is demonstrated through performance evaluation.
    Matched MeSH terms: Computer Security*
  13. Aalsalem MY, Khan WZ, Saad NM, Hossain MS, Atiquzzaman M, Khan MK
    PLoS ONE, 2016;11(7):e0158072.
    PMID: 27409082 DOI: 10.1371/journal.pone.0158072
    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
    Matched MeSH terms: Computer Security*
  14. Shahid Anwar, Mohamad Fadli Zolkipli, Julius Odili, Mushtaq Ali, Zakira Inayat, Jasni Mohamad Zain
    MyJurnal
    Android devices have gained a lot of attention in the last few decades due to several reasons including ease of use, effectiveness, availability and games, among others. To take advantage of Android devices, mobile users have begun installing an increasingly substantial number of Android applications on their devices. Rapid growth in many Android devices and applications has led to security and privacy issues. It has, for instance, opened the way for malicious applications to be installed on the Android devices while downloading different applications for different purposes. This has caused malicious applications to execute illegal operations on the devices that result in malfunction outputs. Android botnets are one of these malfunctions. This paper presents Android botnets in various aspects including their security, architecture, infection vectors and techniques. This paper also evaluates Android botnets by categorising them according to behaviour. Furthermore, it investigates the Android botnets with respect to Android device threats. Finally, we investigate different Android botnet detection techniques in depth with respect to the existing solutions deployed to mitigate Android botnets.
    Matched MeSH terms: Computer Security
  15. Tavana M, Khosrojerdi G, Mina H, Rahman A
    Eval Program Plann, 2019 Aug 13;77:101703.
    PMID: 31442587 DOI: 10.1016/j.evalprogplan.2019.101703
    The primary goal in project portfolio management is to select and manage the optimal set of projects that contribute the maximum in business value. However, selecting Information Technology (IT) projects is a difficult task due to the complexities and uncertainties inherent in the strategic-operational nature of the process, and the existence of both quantitative and qualitative criteria. We propose a two-stage process to select an optimal project portfolio with the aim of maximizing project benefits and minimizing project risks. We construct a two-stage hybrid mathematical programming model by integrating Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Inference System (FIS). This hybrid framework provides the ability to consider both the quantitative and qualitative criteria while considering budget constraints and project risks. We also present a real-world case study in the cybersecurity industry to exhibit the applicability and demonstrate the efficacy of our proposed method.
    Matched MeSH terms: Computer Security
  16. Badshah G, Liew SC, Zain JM, Ali M
    J Digit Imaging, 2016 Apr;29(2):216-25.
    PMID: 26429361 DOI: 10.1007/s10278-015-9822-4
    In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.
    Matched MeSH terms: Computer Security*
  17. Samy GN, Ahmad R, Ismail Z
    Health Informatics J, 2010 Sep;16(3):201-9.
    PMID: 20889850 DOI: 10.1177/1460458210377468
    This article attempts to investigate the various types of threats that exist in healthcare information systems (HIS). A study has been carried out in one of the government-supported hospitals in Malaysia.The hospital has been equipped with a Total Hospital Information System (THIS). The data collected were from three different departments, namely the Information Technology Department (ITD), the Medical Record Department (MRD), and the X-Ray Department, using in-depth structured interviews. The study identified 22 types of threats according to major threat categories based on ISO/IEC 27002 (ISO 27799:2008). The results show that the most critical threat for the THIS is power failure followed by acts of human error or failure and other technological factors. This research holds significant value in terms of providing a complete taxonomy of threat categories in HIS and also an important component in the risk analysis stage.
    Matched MeSH terms: Computer Security*
  18. Al-Qershi OM, Khoo BE
    J Digit Imaging, 2011 Feb;24(1):114-25.
    PMID: 19937363 DOI: 10.1007/s10278-009-9253-1
    Authenticating medical images using watermarking techniques has become a very popular area of research, and some works in this area have been reported worldwide recently. Besides authentication, many data-hiding techniques have been proposed to conceal patient's data into medical images aiming to reduce the cost needed to store data and the time needed to transmit data when required. In this paper, we present a new hybrid watermarking scheme for DICOM images. In our scheme, two well-known techniques are combined to gain the advantages of both and fulfill the requirements of authentication and data hiding. The scheme divides the images into two parts, the region of interest (ROI) and the region of non-interest (RONI). Patient's data are embedded into ROI using a reversible technique based on difference expansion, while tamper detection and recovery data are embedded into RONI using a robust technique based on discrete wavelet transform. The experimental results show the ability of hiding patient's data with a very good visual quality, while ROI, the most important area for diagnosis, is retrieved exactly at the receiver side. The scheme also shows some robustness against certain levels of salt and pepper and cropping noise.
    Matched MeSH terms: Computer Security*
  19. Sudha R, Thiagarajan AS, Seetharaman A
    Pak. J. Biol. Sci., 2007 Jan 01;10(1):102-6.
    PMID: 19069993
    The existing literatures highlights that the security is the primary factor which determines the adoption of Internet banking technology. The secondary information on Internet banking development in Malaysia shows a very slow growth rate. Hence, this study aims to study the banking customers perception towards security concern and Internet banking adoption through the information collected from 150 sample respondents. The data analysis reveals that the customers have much concern about security and privacy issue in adoption of Internet banking, whether the customers are adopted Internet banking or not. Hence, it infers that to popularize Internet banking system there is a need for improvement in security and privacy issue among the banking customers.
    Matched MeSH terms: Computer Security*
  20. Goh A
    Stud Health Technol Inform, 2000;77:1069-73.
    PMID: 11187485
    Multiparty transactional frameworks--i.e. Electronic Data Interchange (EDI) or Health Level (HL) 7--often result in composite documents which can be accurately modelled using hyperlinked document-objects. The structural complexity arising from multiauthor involvement and transaction-specific sequencing would be poorly handled by conventional digital signature schemes based on a single evaluation of a one-way hash function and asymmetric cryptography. In this paper we outline the generation of structure-specific authentication hash-trees for the the authentication of transactional document-objects, followed by asymmetric signature generation on the hash-tree value. Server-side multi-client signature verification would probably constitute the single most compute-intensive task, hence the motivation for our usage of the Rabin signature protocol which results in significantly reduced verification workloads compared to the more commonly applied Rivest-Shamir-Adleman (RSA) protocol. Data privacy is handled via symmetric encryption of message traffic using session-specific keys obtained through key-negotiation mechanisms based on discrete-logarithm cryptography. Individual client-to-server channels can be secured using a double key-pair variation of Diffie-Hellman (DH) key negotiation, usage of which also enables bidirectional node authentication. The reciprocal server-to-client multicast channel is secured through Burmester-Desmedt (BD) key-negotiation which enjoys significant advantages over the usual multiparty extensions to the DH protocol. The implementation of hash-tree signatures and bi/multidirectional key negotiation results in a comprehensive cryptographic framework for multiparty document-objects satisfying both authentication and data privacy requirements.
    Matched MeSH terms: Computer Security*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links