Displaying publications 1 - 20 of 401 in total

Abstract:
Sort:
  1. Goessens A, Satyanarayana B, Van der Stocken T, Quispe Zuniga M, Mohd-Lokman H, Sulong I, et al.
    PLoS One, 2014;9(8):e105069.
    PMID: 25144689 DOI: 10.1371/journal.pone.0105069
    Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia is under systematic management since 1902 and still considered as the best managed mangrove forest in the world. The present study on silvimetrics assessed the ongoing MMFR forest management, which includes a first thinning after 15 years, a second thinning after 20 years and clear-felling of 30-year old forest blocks, for its efficiency and productivity in comparison to natural mangroves. The estimated tree structural parameters (e.g. density, frequency) from three different-aged mangrove blocks of fifteen (MF15), twenty (MF20), and thirty (MF30) years old indicated that Bruguiera and Excoecaria spp. did not constitute a significant proportion of the vegetation (<5%), and hence the results focused majorly on Rhizophora apiculata. The density of R. apiculata at MF15, MF20 and MF30 was 4,331, 2,753 and 1,767 stems ha(-1), respectively. In relation to ongoing practices of the artificial thinnings at MMFR, the present study suggests that the first thinning could be made earlier to limit the loss of exploitable wood due to natural thinning. In fact, the initial density at MF15 was expected to drop down from 6,726 to 1,858 trees ha(-1) before the first thinning. Therefore the trees likely to qualify for natural thinning, though having a smaller stem diameter, should be exploited for domestic/commercial purposes at an earlier stage. The clear-felling block (MF30) with a maximum stem diameter of 30 cm was estimated to yield 372 t ha(-1) of the above-ground biomass and suggests that the mangrove management based on a 30-year rotation is appropriate for the MMFR. Since Matang is the only iconic site that practicing sustainable wood production, it could be an exemplary to other mangrove locations for their improved management.
    Matched MeSH terms: Conservation of Natural Resources*
  2. Masoumik SM, Abdul-Rashid SH, Olugu EU, Raja Ghazilla RA
    ScientificWorldJournal, 2014;2014:897121.
    PMID: 24523652 DOI: 10.1155/2014/897121
    Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research.
    Matched MeSH terms: Conservation of Natural Resources*
  3. Wasserman RJ, Dick JTA, Welch RJ, Dalu T, Magellan K
    Conserv Biol, 2019 08;33(4):969-971.
    PMID: 30417437 DOI: 10.1111/cobi.13250
    Matched MeSH terms: Conservation of Natural Resources*
  4. Adib Kabir Chowdhur, Veeramani, Shanmugan
    MyJurnal
    In this modern world, Information Technology gives impacts on society, countries, economy, and environment. This paper discusses the positive, negative, direct and indirect impacts of IT on environmental issues. A strategy for sustainable development in ICT and its future demand are also proposed. Apart from that, a research was also done to find a quantitative indicator to show the relationship between demand in IT industry and impacts to the environment. By using a mathematical formula, an estimation of the effect to the environment can be found. By using the indicator, it is hoped that society and the IT industry will become more aware of their action to the environment.
    Matched MeSH terms: Conservation of Natural Resources
  5. Ashraf MA, Mohd Hanafiah M
    Environ Sci Pollut Res Int, 2019 05;26(14):13679-13680.
    PMID: 30350141 DOI: 10.1007/s11356-018-3528-3
    Matched MeSH terms: Conservation of Natural Resources
  6. Sheau-Ting L, Mohammed AH, Weng-Wai C
    J Environ Manage, 2013 Dec 15;131:196-205.
    PMID: 24178312 DOI: 10.1016/j.jenvman.2013.10.001
    This study attempts to identify the optimum social marketing mix for marketing energy conservation behaviour to students in Malaysian universities. A total of 2000 students from 5 major Malaysian universities were invited to provide their preferred social marketing mix. A choice-based conjoint analysis identified a mix of five social marketing attributes to promote energy conservation behaviour; the mix is comprised of the attributes of Product, Price, Place, Promotion, and Post-purchase Maintenance. Each attribute of the mix is associated with a list of strategies. The Product and Post-purchase Maintenance attributes were identified by students as the highest priority attributes in the social marketing mix for energy conservation behaviour marketing, with shares of 27.12% and 27.02%, respectively. The least preferred attribute in the mix is Promotion, with a share of 11.59%. This study proposes an optimal social marketing mix to university management when making decisions about marketing energy conservation behaviour to students, who are the primary energy consumers in the campus. Additionally, this study will assist university management to efficiently allocate scarce resources in fulfilling its social responsibility and to overcome marketing shortcomings by selecting the right marketing mix.
    Matched MeSH terms: Conservation of Natural Resources/methods*
  7. Roucoux KH, Lawson IT, Baker TR, Del Castillo Torres D, Draper FC, Lähteenoja O, et al.
    Conserv Biol, 2017 12;31(6):1283-1292.
    PMID: 28272753 DOI: 10.1111/cobi.12925
    Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza-Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land-use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon-dense (domed pole forest) areas. New carbon-based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development.
    Matched MeSH terms: Conservation of Natural Resources*
  8. Moleón M, Sánchez-Zapata JA, Donázar JA, Revilla E, Martín-López B, Gutiérrez-Cánovas C, et al.
    Proc Biol Sci, 2020 03 11;287(1922):20192643.
    PMID: 32126954 DOI: 10.1098/rspb.2019.2643
    Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.
    Matched MeSH terms: Conservation of Natural Resources*
  9. Yan J, Gao S, Xu M, Su F
    Environ Monit Assess, 2020 Dec 01;192(12):803.
    PMID: 33263164 DOI: 10.1007/s10661-020-08765-6
    Forests and agricultural lands are the main resources on the earth's surface and important indicators of regional ecological environments. In this paper, Landsat images from 1990 and 2017 were used to extract information on forests in Malaysia based on a remote-sensing classification method. The spatial-temporal changes of forests and agricultural lands in Malaysia between 1990 and 2017 were analyzed. The results showed that the natural forests in Malaysia decreased by 441 Mha, a reduction of 21%. The natural forests were mainly converted into plantations in Peninsular Malaysia and plantations and secondary forests in East Malaysia. The area of agricultural lands in Malaysia increased by 55.7%, in which paddy fields increased by 1.1% and plantations increased by 98.2%. Paddy fields in Peninsular Malaysia are mainly distributed in the north-central coast and the Kelantan Delta. The agricultural land in East Malaysia is dominated by plantations, which are mainly distributed in coastal areas. The predictable areas of possible expansion for paddy fields in Peninsular Malaysia's Kelantan (45.2%) and Kedah (16.8%) areas in the future are large, and in addition, the plantations in Sarawak (44.7%) and Sabah (29.6%) of East Malaysia have large areas for expansion. The contradiction between agricultural development and protecting the ecological environment is increasingly prominent. The demand for agriculture is expected to increase further and result in greater pressures on tropical forests. Governments also need to encourage farmers to carry out existing land development, land recultivation, or cooperative development to improve agricultural efficiency and reduce the damage to natural forests.
    Matched MeSH terms: Conservation of Natural Resources*
  10. Friess DA, Yando ES, Abuchahla GMO, Adams JB, Cannicci S, Canty SWJ, et al.
    Curr Biol, 2020 02 24;30(4):R153-R154.
    PMID: 32097637 DOI: 10.1016/j.cub.2019.12.054
    Friess et al. discuss the results of conservation efforts for mangrove forests in recent years.
    Matched MeSH terms: Conservation of Natural Resources*
  11. Masoumik SM, Abdul-Rashid SH, Olugu EU
    PLoS One, 2015;10(11):e0143115.
    PMID: 26618353 DOI: 10.1371/journal.pone.0143115
    To maintain a competitive position, companies are increasingly required to integrate their proactive environmental strategies into their business strategies. The shift from reactive and compliance-based to proactive and strategic environmental management has driven companies to consider the strategic factors while identifying the areas in which they should focus their green initiatives. In previous studies little attention was given to providing the managers with a basis from which they could strategically prioritise these green initiatives across their companies' supply chains. Considering this lacuna in the literature, we present a decision-making method for prioritising green supply chain initiatives aligned with the preferred green strategies alternatives for the manufacturing companies. To develop this method, the study considered a position between determinism and the voluntarism orientation of environmental management involving both external pressures and internal competitive drivers and key resources as decision factors. This decision-making method was developed using the analytic network process (ANP) technique. The elements of the decision model were derived from the literature. The causal relationships among the multiple decision variables were validated based on the results of structural equation modelling (SEM) using a dataset collected from a survey of the ISO 14001-certified manufacturers in Malaysia. A portion of the relative weights required for computation in ANP was also calculated using the SEM results. A case study is presented to demonstrate the applicability of the method.
    Matched MeSH terms: Conservation of Natural Resources/economics; Conservation of Natural Resources/methods*
  12. Rodrigues AS, Brooks TM, Butchart SH, Chanson J, Cox N, Hoffmann M, et al.
    PLoS One, 2014;9(11):e113934.
    PMID: 25426636 DOI: 10.1371/journal.pone.0113934
    The world's governments have committed to preventing the extinction of threatened species and improving their conservation status by 2020. However, biodiversity is not evenly distributed across space, and neither are the drivers of its decline, and so different regions face very different challenges. Here, we quantify the contribution of regions and countries towards recent global trends in vertebrate conservation status (as measured by the Red List Index), to guide action towards the 2020 target. We found that>50% of the global deterioration in the conservation status of birds, mammals and amphibians is concentrated in <1% of the surface area, 39/1098 ecoregions (4%) and eight/195 countries (4%) - Australia, China, Colombia, Ecuador, Indonesia, Malaysia, Mexico, and the United States. These countries hold a third of global diversity in these vertebrate groups, partially explaining why they concentrate most of the losses. Yet, other megadiverse countries - most notably Brazil (responsible for 10% of species but just 1% of deterioration), plus India and Madagascar - performed better in conserving their share of global vertebrate diversity. Very few countries, mostly island nations (e.g. Cook Islands, Fiji, Mauritius, Seychelles, and Tonga), have achieved net improvements. Per capita wealth does not explain these patterns, with two of the richest countries - United States and Australia - fairing conspicuously poorly. Different countries were affected by different combinations of threats. Reducing global rates of biodiversity loss will require investment in the regions and countries with the highest responsibility for the world's biodiversity, focusing on conserving those species and areas most in peril and on reducing the drivers with the highest impacts.
    Matched MeSH terms: Conservation of Natural Resources/methods*; Conservation of Natural Resources/statistics & numerical data
  13. Cao L, Chen Y, Dong S, Hanson A, Huang B, Leadbitter D, et al.
    Proc Natl Acad Sci U S A, 2017 01 17;114(3):435-442.
    PMID: 28096504 DOI: 10.1073/pnas.1616583114
    China's 13th Five-Year Plan, launched in March 2016, provides a sound policy platform for the protection of marine ecosystems and the restoration of capture fisheries within China's exclusive economic zone. What distinguishes China among many other countries striving for marine fisheries reform is its size-accounting for almost one-fifth of global catch volume-and the unique cultural context of its economic and resource management. In this paper, we trace the history of Chinese government priorities, policies, and outcomes related to marine fisheries since the 1978 Economic Reform, and examine how the current leadership's agenda for "ecological civilization" could successfully transform marine resource management in the coming years. We show how China, like many other countries, has experienced a decline in the average trophic level of its capture fisheries during the past few decades, and how its policy design, implementation, and enforcement have influenced the status of its wild fish stocks. To reverse the trend in declining fish stocks, the government is introducing a series of new programs for sustainable fisheries and aquaculture, with greater traceability and accountability in marine resource management and area controls on coastal development. As impressive as these new plans are on paper, we conclude that serious institutional reforms will be needed to achieve a true paradigm shift in marine fisheries management in China. In particular, we recommend new institutions for science-based fisheries management, secure fishing access, policy consistency across provinces, educational programs for fisheries managers, and increasing public access to scientific data.
    Matched MeSH terms: Conservation of Natural Resources/economics; Conservation of Natural Resources/legislation & jurisprudence
  14. Friess DA, Thompson BS, Brown B, Amir AA, Cameron C, Koldewey HJ, et al.
    Conserv Biol, 2016 10;30(5):933-49.
    PMID: 27341487 DOI: 10.1111/cobi.12784
    Many drivers of mangrove forest loss operate over large scales and are most effectively addressed by policy interventions. However, conflicting or unclear policy objectives exist at multiple tiers of government, resulting in contradictory management decisions. To address this, we considered four approaches that are being used increasingly or could be deployed in Southeast Asia to ensure sustainable livelihoods and biodiversity conservation. First, a stronger incorporation of mangroves into marine protected areas (that currently focus largely on reefs and fisheries) could resolve some policy conflicts and ensure that mangroves do not fall through a policy gap. Second, examples of community and government comanagement exist, but achieving comanagement at scale will be important in reconciling stakeholders and addressing conflicting policy objectives. Third, private-sector initiatives could protect mangroves through existing and novel mechanisms in degraded areas and areas under future threat. Finally, payments for ecosystem services (PES) hold great promise for mangrove conservation, with carbon PES schemes (known as blue carbon) attracting attention. Although barriers remain to the implementation of PES, the potential to implement them at multiple scales exists. Closing the gap between mangrove conservation policies and action is crucial to the improved protection and management of this imperiled coastal ecosystem and to the livelihoods that depend on them.
    Matched MeSH terms: Conservation of Natural Resources*
  15. Wilson JJ, Sing KW, Lee PS, Wee AK
    Conserv Biol, 2016 10;30(5):982-9.
    PMID: 27341687 DOI: 10.1111/cobi.12787
    Over the past 50 years, Tropical East Asia has lost more biodiversity than any tropical region. Tropical East Asia is a megadiverse region with an acute taxonomic impediment. DNA barcodes are short standardized DNA sequences used for taxonomic purposes and have the potential to lessen the challenges of biodiversity inventory and assessments in regions where they are most needed. We reviewed DNA barcoding efforts in Tropical East Asia relative to other tropical regions. We suggest DNA barcodes (or metabarcodes from next-generation sequencers) may be especially useful for characterizing and connecting species-level biodiversity units in inventories encompassing taxa lacking formal description (particularly arthropods) and in large-scale, minimal-impact approaches to vertebrate monitoring and population assessments through secondary sources of DNA (invertebrate derived DNA and environmental DNA). We suggest interest and capacity for DNA barcoding are slowly growing in Tropical East Asia, particularly among the younger generation of researchers who can connect with the barcoding analogy and understand the need for new approaches to the conservation challenges being faced.
    Matched MeSH terms: Conservation of Natural Resources*
  16. Richards DR, Friess DA
    Proc Natl Acad Sci U S A, 2016 Jan 12;113(2):344-9.
    PMID: 26712025 DOI: 10.1073/pnas.1510272113
    The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.
    Matched MeSH terms: Conservation of Natural Resources*
  17. Brodie JF, Paxton M, Nagulendran K, Balamurugan G, Clements GR, Reynolds G, et al.
    Conserv Biol, 2016 10;30(5):950-61.
    PMID: 26648510 DOI: 10.1111/cobi.12667
    We examined the links between the science and policy of habitat corridors to better understand how corridors can be implemented effectively. As a case study, we focused on a suite of landscape-scale connectivity plans in tropical and subtropical Asia (Malaysia, Singapore, and Bhutan). The process of corridor designation may be more efficient if the scientific determination of optimal corridor locations and arrangement is synchronized in time with political buy-in and establishment of policies to create corridors. Land tenure and the intactness of existing habitat in the region are also important to consider because optimal connectivity strategies may be very different if there are few, versus many, political jurisdictions (including commercial and traditional land tenures) and intact versus degraded habitat between patches. Novel financing mechanisms for corridors include bed taxes, payments for ecosystem services, and strategic forest certifications. Gaps in knowledge of effective corridor design include an understanding of how corridors, particularly those managed by local communities, can be protected from degradation and unsustainable hunting. There is a critical need for quantitative, data-driven models that can be used to prioritize potential corridors or multicorridor networks based on their relative contributions to long-term metacommunity persistence.
    Matched MeSH terms: Conservation of Natural Resources*
  18. Molfese C, Beare D, Hall-Spencer JM
    PLoS One, 2014;9(7):e101506.
    PMID: 25010196 DOI: 10.1371/journal.pone.0101506
    The worldwide depletion of major fish stocks through intensive industrial fishing is thought to have profoundly altered the trophic structure of marine ecosystems. Here we assess changes in the trophic structure of the English Channel marine ecosystem using a 90-year time-series (1920-2010) of commercial fishery landings. Our analysis was based on estimates of the mean trophic level (mTL) of annual landings and the Fishing-in-Balance index (FiB). Food webs of the Channel ecosystem have been altered, as shown by a significant decline in the mTL of fishery landings whilst increases in the FiB index suggest increased fishing effort and fishery expansion. Large, high trophic level species (e.g. spurdog, cod, ling) have been increasingly replaced by smaller, low trophic level fish (e.g. small spotted catsharks) and invertebrates (e.g. scallops, crabs and lobster). Declining trophic levels in fisheries catches have occurred worldwide, with fish catches progressively being replaced by invertebrates. We argue that a network of fisheries closures would help rebalance the trophic status of the Channel and allow regeneration of marine ecosystems.
    Matched MeSH terms: Conservation of Natural Resources*
  19. Lee SC, Hashim R, Motamedi S, Song KI
    ScientificWorldJournal, 2014;2014:494020.
    PMID: 24955408 DOI: 10.1155/2014/494020
    Threats to beaches have accelerated the coastal destruction. In recent decades, geotextile tubes were used around the world to prevent coastal erosion, to encourage beach nourishment, and to assist mangrove rehabilitation. However, the applications of geotextile tube in sandy and muddy coasts have different concerns as the geological settings are different. Applications of geotextile tubes in sandy beaches were mainly to prevent coastline from further erosion and to nourish the beach. However, for the muddy coasts, mangrove rehabilitation and conservation were additional concerns in coastal management schemes. The mangrove forests are natural barriers which can be found on the muddy coasts of many tropical countries. In this paper, the viability of geotextile tubes in sandy and muddy beaches was analysed. The advantages and disadvantages of the utilization of geotextile tubes in coastal management were discussed based on the experiences from the tropical countries such as Mexico, Malaysia, and Thailand. From the case studies, impressive improvements in coastal restoration after installation of geotextile tubes were shown. Based on the discussion, several recommendations to improve the application of geotextile tubes were suggested in this paper.
    Matched MeSH terms: Conservation of Natural Resources*
  20. Eriksson H, de la Torre-Castro M, Purcell SW, Olsson P
    Ambio, 2015 Apr;44(3):204-13.
    PMID: 25238980 DOI: 10.1007/s13280-014-0552-5
    Small-scale fisheries present challenges to management due to fishers' dependency on resources and the adaptability of management systems. We compared social-ecological processes in the sea cucumber fisheries of Zanzibar and Mayotte, Western Indian Ocean, to better understand the reasons for resource conservation or collapse. Commercial value of wild stocks was at least 30 times higher in Mayotte than in Zanzibar owing to lower fishing pressure. Zanzibar fishers were financially reliant on the fishery and increased fishing effort as stocks declined. This behavioral response occurred without adaptive management and reinforced an unsustainable fishery. In contrast, resource managers in Mayotte adapted to changing fishing effort and stock abundance by implementing a precautionary fishery closure before crossing critical thresholds. Fishery closure may be a necessary measure in small-scale fisheries to preserve vulnerable resources until reliable management systems are devised. Our comparison highlighted four poignant lessons for managing small-scale fisheries: (1) diagnose the fishery regularly, (2) enable an adaptive management system, (3) constrain exploitation within ecological limits, and (4) share management responsibility.
    Matched MeSH terms: Conservation of Natural Resources*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links