Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Retnasabapathy A, Lourdusamy D
    PMID: 4432113
    Matched MeSH terms: Cricetinae/parasitology*
  2. Ramachandran CP, Sandosham AA, Sivanandam S
    Med J Malaya, 1966 Jun;20(4):333.
    PMID: 4224348
    Matched MeSH terms: Cricetinae
  3. Mohandas S, Shete A, Sarkale P, Kumar A, Mote C, Yadav P
    Virulence, 2023 Dec;14(1):2224642.
    PMID: 37312405 DOI: 10.1080/21505594.2023.2224642
    Nipah virus (NiV) is a high-risk pathogen which can cause fatal infections in humans. The Indian isolate from the 2018 outbreak in the Kerala state of India showed ~ 4% nucleotide and amino acid difference in comparison to the Bangladesh strains of NiV and the substitutions observed were mostly not present in the region of any functional significance except for the phosphoprotein gene. The differential expression of viral genes was observed following infection in Vero (ATCC® CCL-81™) and BHK-21 cells. Intraperitoneal infection in the 10-12-week-old, Syrian hamster model induced dose dependant multisystemic disease characterized by prominent vascular lesions in lungs, brain, kidney and extra vascular lesions in brain and lungs. Congestion, haemorrhages, inflammatory cell infiltration, thrombosis and rarely endothelial syncitial cell formation were seen in the blood vessels. Intranasal infection resulted in respiratory tract infection characterised by pneumonia. The model showed disease characteristics resembling the human NiV infection except that of myocarditis similar to that reported by NiV-Malaysia and NiV-Bangladesh isolates in hamster model. The variation observed in the genome of the Indian isolate at the amino acid levels should be explored further for any functional significance.
    Matched MeSH terms: Cricetinae
  4. Lu M, Yao Y, Liu H, Zhang X, Li X, Liu Y, et al.
    JCI Insight, 2023 Dec 08;8(23).
    PMID: 37917215 DOI: 10.1172/jci.insight.175461
    Nipah virus (NiV), a bat-borne paramyxovirus, results in neurological and respiratory diseases with high mortality in humans and animals. Developing vaccines is crucial for fighting these diseases. Previously, only a few studies focused on the fusion (F) protein alone as the immunogen. Numerous NiV strains have been identified, including 2 representative strains from Malaysia (NiV-M) and Bangladesh (NiV-B), which differ significantly from each other. In this study, an F protein sequence with the potential to prevent different NiV strain infections was designed by bioinformatics analysis after an in-depth study of NiV sequences in GenBank. Then, a chimpanzee adenoviral vector vaccine and a DNA vaccine were developed. High levels of immune responses were detected after AdC68-F, pVAX1-F, and a prime-boost strategy (pVAX1-F/AdC68-F) in mice. After high titers of humoral responses were induced, the hamsters were challenged by the lethal NiV-M and NiV-B strains separately. The vaccinated hamsters did not show any clinical signs and survived 21 days after infection with either strain of NiV, and no virus was detected in different tissues. These results indicate that the vaccines provided complete protection against representative strains of NiV infection and have the potential to be developed as a broad-spectrum vaccine for human use.
    Matched MeSH terms: Cricetinae
  5. Cheow PS, Tan TK, Song AA, Yusoff K, Chia SL
    Biotechniques, 2020 02;68(2):96-100.
    PMID: 31937115 DOI: 10.2144/btn-2019-0110
    Reverse genetics has been used to generate recombinant Newcastle disease virus with enhanced immunogenic properties for vaccine development. The system, which involves co-transfecting the viral antigenomic plasmid with three helper plasmids into a T7 RNA polymerase-expressing cell to produce viral progenies, poses a great challenge. We have modified the standard transfection method to improve the transfection efficiency of the plasmids, resulting in a higher titer of virus progeny production. Two transfection reagents (i.e., lipofectamine and polyethylenimine) were used to compare the transfection efficiency of the four plasmids. The virus progenies produced were quantitated with flow cytometry analysis of the infectious virus unit. The modified transfection method increased the titer of virus progenies compared with that of the standard transfection method.
    Matched MeSH terms: Cricetinae
  6. Dharshanan S, Hung CS
    Methods Mol Biol, 2014;1131:105-12.
    PMID: 24515462 DOI: 10.1007/978-1-62703-992-5_7
    Generation of high-producing clones is a perquisite for achieving recombinant protein yields suitable for biopharmaceutical production. However, in many industrially important cell lines used to produce recombinant proteins such as Chinese hamster ovary, mouse myeloma line (NS0), and hybridomas, only a minority of clones show significantly above-average productivity. Thus, in order to have a reasonable probability of finding rare high-producing clones, a large number of clones need to be screened. Limiting dilution cloning is the most commonly used method, owing to its relative simplicity and low cost. However the use of liquid media in this method makes the selection of monoclonal hybridoma and transfectoma colonies to be labor intensive and time consuming, thus significantly limiting the number of clones that can be feasibly screened. Hence, we describe the use of semisolid media to immobilize clones and a high-throughput, automated colony picker (ClonePix FL) to efficiently isolate monoclonal high-producing clones secreting monoclonal antibodies.
    Matched MeSH terms: Cricetinae
  7. Amir A, Sum JS, Lau YL, Vythilingam I, Fong MY
    Parasit Vectors, 2013;6:81.
    PMID: 23537404 DOI: 10.1186/1756-3305-6-81
    Anopheles cracens has been incriminated as a vector for the simian malaria parasite, Plasmodium knowlesi, that is the fifth Plasmodium species infecting humans. Little experimental data exists on this mosquito species due to the lack of its availability in laboratories.
    Matched MeSH terms: Cricetinae
  8. Khor HT, Chieng DY
    Asia Pac J Clin Nutr, 1997 Mar;6(1):36-40.
    PMID: 24394651
    Syrian Golden hamsters have been widely used as a experimental model for the investigation of the aetiology and development of atherosclerosis and cardiovascular disease. The responses of the hamster to dietary fat manipulations are in many ways similar to that observed in humans. The lipidaemic effect of a tocotrienol rich fraction (TRF) from palm oil on human trials has not been consistent. In this study, the cholesterolaemic effect of tocotrienols and tocopherols were differentiated by using pure tocotrienols (that were isolated from palm oil fatty acid distillate) and pure commercial tocopherols and squalene. A palm oil triacylglycerol fraction (POTG), free of all unsaponifiable matter, was used as the dietary fat in different feeding experiments. Tocotrienols added at 162 ppm to POTG (POTG-T3L) significantly (p<0.05) lowered serum total cholesterol (TC) level as compared to that of the POTG group; but the serum LDL-C , HDL-C and TG levels of the POTG-T3L group were not significantly lower than that of the POTG group (P>0.05). Increasing the level of tocotrienol supplementation to the diet (POTG-T3H) appeared to raise rather then reduce the serum TC, LDL-C and HDL-C levels as compared to that of POTG-T3L group. This observation that lower level of tocotrienol supplementation appeared to exhibit stronger hypocholesterolaemic effect than a higher level of tocotrienol supplementation is interesting; but its explanation is not yet forthcoming. When tocopherols were supplemented at 72 ppm to the POTG diet it was observed that the serum TC, LDL-C and HDL-C levels were all somewhat increased when compared to that of the POTG group. These results suggest that tocotrienols and tocopherols may have opposite cholesterolaemic effects in the hamster, and further experiments need to clarify the mode of action of these vitamin E isomers. In our second series of experiments the cholesterolaemic effects of tocotrienols and tocopherols were studied in the presence of squalene, a key intermediate in the cholesterol synthesis pathway and a controversial cholesterol lowering agent. Squalene added to the diet at 0.1% level significantly lowered (p<0.05) serum TC level when compared to that of the POTG group. The LDL-C, HDL-C and TG levels appeared to be lowered by the squalene supplementation also but the differences between the POTG-SQ and POTG groups were not statistically significant (P>0.05). When tocotrienols or tocopherols were added to the squalene-containing POTG diets, the serum TC and LDL-C levels were further reduced (p<0.01) when compared to that of the POTG and POTG-SQ groups. The HDL-C and TG levels were not affected by tocotrienol or tocopherol supplementation in the presence of squalene. These results indicate that in the presence of tocotrienols and squalene POTG exhibit hypocholesterolaemic action whereas tocopherols may have a hypercholesterolaemic effect in the hamster.
    Matched MeSH terms: Cricetinae
  9. Siti P.M. Bohari, Hamidreza Aboulkheyr E, Nur S. Johan, Nursyuhada F. Zainudin
    Sains Malaysiana, 2017;46:575-581.
    According to the World Cancer Research Fund International (WCRFI), breast cancer is the most common type of cancer in women worldwide with recorded 1.7 million new cases in 2012. The main line of treatments is still limited to chemotherapy, surgery and radiotherapy which could lead to a wide range of dangerous side effects. This study was conducted to evaluate the effect of low intensity ultrasound (LIUS) on cell proliferation, percentage of living and dead cells and the induction of apoptosis on the MCF-7 cell line with CHO cells as the control for non-cancerous group. In order to achieve the objective of this study, several methods of cell-bioguided assays were used including the MTT assay for cell proliferation, Live/Dead assay for the determination of both live and dead cells and gene expression study for the detection of apoptosis in the cells. The cytotoxicity and Live/Dead assays data provided preliminary data that the LIUS has potential to induce apoptosis in a wide population of breast cancer cells. Furthermore, the LIUS treatment induced the expression of p53-mRNA at a detectable level via qPCR analysis, indicating the activation of apoptosis. In short, our study suggested LIUS dosage used in this study could potentially show positive effects in the induction of apoptosis selectively on the MCF-7 with less harm to the control CHO cells.
    Matched MeSH terms: Cricetinae
  10. Li YY, Fu SH, Guo XF, Lei WW, Li XL, Song JD, et al.
    Biomed Environ Sci, 2017 Mar;30(3):210-214.
    PMID: 28427491 DOI: 10.3967/bes2017.028
    In this study, we isolated a virus strain (YN12031) from specimens of Armigeres subalbatus collected in the China-Laos border. BHK-21 cells infected with YN12031 exhibited an evident cytopathic effect (CPE) 32 h post-infection. The virus particles were spherical, 70 nm in diameter, and enveloped; they also featured surface fibers. Molecular genetic analysis revealed that YN12031 was closely related to alpha viruses such as Chikungunya virus and Sindbis virus, and located in the same clade as MM2021, the prototype of Getahvirus (GETV) isolated in Malaysia in 1955. Phylogenetic analysis of the E2 and capsid genes further revealed that YN12031 was located in the same clade as the Russian isolate LEIV/16275/Mag. Analysis of the homology of nucleotides and amino acids in the coding area and E2 gene demonstrated that the YN12031 isolated from the China-Laos border (tropical region) was related closest to the LEIV/16275/Mag isolate obtained in Russia (North frigid zone area) among other isolates studied. These results suggest that GETV can adapt to different geographical environments to propagate and evolve. Thus, strengthening the detection and monitoring of GETV and its related diseases is very crucial.
    Matched MeSH terms: Cricetinae
  11. Umar-Tsafe N, Mohamed-Said MS, Rosli R, Din LB, Lai LC
    Mutat Res, 2004 Aug 8;562(1-2):91-102.
    PMID: 15279832
    Goniothalamin (GTN) is a styrylpyrrone derivative from Goniothalamus umbrosus and other Annonaceae species. It has been shown to have anti-cancer and apoptosis-inducing properties against various human tumour and animal cell lines. The compound has also been shown to be active in vivo against DMBA-induced rat mammary tumours and was reported as an anti-fertility agent in rats. The aim of our study was to assess the genotoxicity of GTN in CHO cells using the UKEMS guidelines. A metabolic activation fraction (S9) was prepared according to standard methods. The methylthiazoletetrazolium (MTT) screening assay was then carried out to determine the cytotoxicity index (IC50) of GTN. The average IC50 value was 12.45 (+/- 3.63)microM. The mitotic index (MI) assay was then performed to determine the clastogenicity indices (MI(C25), MI(C50) and MI(C100)) of GTN. The chromosome aberration (CA) induction assay using air-dried metaphase spread was then performed to investigate the clastogenic effects of goniothalamin. Benzo[a]pyrene (BaP) and ethylmethanesulphonate (EMS) were used as positive controls in the presence and absence of S9 metabolic activation, respectively. The anti-genotoxicity effect of GTN was also assessed using a combination of GTN and EMS, and GTN and BaP. Dose-responses of CA frequencies were determined for both, the genotoxicity and anti-genotoxicity effects. GTN on its own and when combined with positive controls, was found to induce and enhance CA, respectively. Chromatid and whole chromosome breaks/gaps, as well as interchanges, endoreduplications and ring chromosomes were the main types of aberration induced by GTN. The overall clastogenic effect of GTN was statistically significant. In conclusion, GTN is potentially a genotoxic or clastogenic substance without any anti-genotoxic properties.
    Matched MeSH terms: Cricetinae
  12. Kavana NJ, Lim L HS, Ambu S
    Trop Biomed, 2014 Sep;31(3):487-95.
    PMID: 25382475 MyJurnal
    The life-cycle of Malaysian Spirometra spp. was studied under experimental conditions in the laboratory. The Cyclops were reared as the first intermediate host, the hamster as the experimental second intermediate host and cat as the definitive host. Maturation and hatching of eggs took 6 to 12 days by incubation at temperature 30 ºC. The hatched coracidium measured 46 x 34 μm. The Cyclops used were susceptible to the coracidial infection. The procercoid older than 5 days in the Cyclop body cavity had minute spines at the anterior end, calcium corpuscles in the body parenchyma and the cercomer at the posterior end. Procercoids 10 to 14 days old were infective to hamster. The plerocercoids from the hamster after 30 days were long and slender and were infective to cats. The plerocercoids experimentally inoculated to cats developed to adult worms and began to produce eggs between 10 to 60 days. Based on the results that have been obtained, a complete life-cycle was successfully elucidated in the laboratory and hamster was identified to be a good laboratory model for a second intermediate host of Spirometra sp.
    Matched MeSH terms: Cricetinae
  13. Chu GS, Palmieri JR, Sullivan JT
    Trop Geogr Med, 1977 Dec;29(4):422-7.
    PMID: 610028
    A reported practice of live beetle ingestion in Southeast Asia was investigated among urban Chinese in Kuala Lumpur, Malaysia. Results of four casefindings are: (1) this practice may not be confined to West Malaysia, (2) it occurs among Chinese and Malays, (3) the original use of the beetles as an aphrodisiac has been modified to include treatment of a wide variety of ailments and diseases and (4) the practice is relatively uncommon among urban Chinese. It was also found through experimental studies that ingestion of the live beetles (Palembus dermestoides) represented a potential public health hazard in that the beetles were able to serve as a host for the human-infecting tapeworm Hymenolepis diminuta (Sullivan et al., 1977).
    Matched MeSH terms: Cricetinae
  14. Strauss JM, Groves MG, Mariappan M, Ellison DW
    Am J Trop Med Hyg, 1969 Sep;18(5):698-702.
    PMID: 5810797
    Matched MeSH terms: Cricetinae
  15. Ellison DW, Baker HJ, Mariappan M
    Am J Trop Med Hyg, 1969 Sep;18(5):694-7.
    PMID: 5810796
    Matched MeSH terms: Cricetinae
  16. Ubuka T, Parhar I
    PMID: 29375482 DOI: 10.3389/fendo.2017.00377
    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that decreases gonadotropin synthesis and release by directly acting on the gonadotrope or by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons. GnIH is also called RFamide-related peptide in mammals or LPXRFamide peptide in fishes due to its characteristic C-terminal structure. The primary receptor for GnIH is GPR147 that inhibits cAMP production in target cells. Although most of the studies in mammals, birds, and fish have shown the inhibitory action of GnIH in the hypothalamic-pituitary-gonadal (HPG) axis, several in vivo studies in mammals and many in vivo and in vitro studies in fish have shown its stimulatory action. In mouse, although the firing rate of the majority of GnRH neurons is decreased, a small population of GnRH neurons is stimulated by GnIH. In hamsters, GnIH inhibits luteinizing hormone (LH) release in the breeding season when their endogenous LH level is high but stimulates LH release in non-breeding season when their LH level is basal. Besides different effects of GnIH on the HPG axis depending on the reproductive stages in fish, higher concentration or longer duration of GnIH administration can stimulate their HPG axis. These results suggest that GnIH action in the HPG axis is modulated by sex-steroid concentration, the action of neuroestrogen synthesized by the activity of aromatase stimulated by GnIH, estrogen membrane receptor, heteromerization and internalization of GnIH, GnRH, and estrogen membrane receptors. The inhibitory and stimulatory action of GnIH in the HPG axis may have a physiological role to maintain reproductive homeostasis according to developmental and reproductive stages.
    Matched MeSH terms: Cricetinae
  17. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT
    Lab Invest, 2020 Sep;100(9):1262-1275.
    PMID: 32601355 DOI: 10.1038/s41374-020-0456-x
    Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
    Matched MeSH terms: Cricetinae/virology*
  18. Sonaimuthu P, Ching XT, Fong MY, Kalyanasundaram R, Lau YL
    Front Microbiol, 2016;7:808.
    PMID: 27303390 DOI: 10.3389/fmicb.2016.00808
    Toxoplasma gondii is the causative agent for toxoplasmosis. The rhoptry protein 1 (ROP1) is secreted by rhoptry, an apical secretory organelle of the parasite. ROP1 plays an important role in host cell invasion. In this study, the efficacy of ROP1 as a vaccine candidate against toxoplasmosis was evaluated through intramuscular or subcutaneous injection of BALB/c mice followed by immunological characterization (humoral- and cellular-mediated) and lethal challenge against virulent T. gondii RH strain in BALB/c mice. Briefly, a recombinant DNA plasmid (pVAX1-GFP-ROP1) was expressed in CHO cells while expression of recombinant ROP1 protein (rROP1) was carried out in Escherichia coli expression system. Immunization study involved injection of the recombinant pVAX1-ROP1 and purified rROP1 into different group of mice. Empty vector and PBS served as two different types of negative controls. Results obtained demonstrated that ROP1 is an immunogenic antigen that induced humoral immune response whereby detection of a protein band with expected size of 43 kDa was observed against vaccinated mice sera through western blot analysis. ROP1 antigen was shown to elicit cellular-mediated immunity as well whereby stimulated splenocytes with total lysate antigen (TLA) and rROP1 from pVAX1-ROP1 and rROP1-immunized mice, respectively, readily proliferated and secreted large amount of IFN-γ (712 ± 28.1 pg/ml and 1457 ± 31.19 pg/ml, respectively) and relatively low IL-4 level (94 ± 14.5 pg/ml and 186 ± 14.17 pg/ml, respectively). These phenomena suggested that Th1-favored immunity was being induced. Vaccination with ROP1 antigen was able to provide partial protection in the vaccinated mice against lethal challenge with virulent RH strain of tachyzoites. These findings proposed that the ROP1 antigen is a potential candidate for the development of vaccine against toxoplasmosis.
    Matched MeSH terms: Cricetinae
  19. Amjad MW, Mohd Amin MC, Mahali SM, Katas H, Ismail I, Hassan MN, et al.
    PLoS One, 2014;9(8):e105234.
    PMID: 25133390 DOI: 10.1371/journal.pone.0105234
    Biomolecules have been widely investigated as potential therapeutics for various diseases. However their use is limited due to rapid degradation and poor cellular uptake in vitro and in vivo. To address this issue, we synthesized a new nano-carrier system comprising of cholic acid-polyethylenimine (CA-PEI) copolymer micelles, via carbodiimide-mediated coupling for the efficient delivery of small interfering ribonucleic acid (siRNA) and bovine serum albumin (BSA) as model protein. The mean particle size of siRNA- or BSA-loaded CA-PEI micelles ranged from 100-150 nm, with zeta potentials of +3-+11 mV, respectively. Atomic force, transmission electron and field emission scanning electron microscopy demonstrated that the micelles exhibited excellent spherical morphology. No significant morphology or size changes were observed in the CA-PEI micelles after siRNA and BSA loading. CA-PEI micelles exhibited sustained release profile, the effective diffusion coefficients were successfully estimated using a mathematically-derived cylindrical diffusion model and the release data of siRNA and BSA closely fitted into this model. High siRNA and BSA binding and loading efficiencies (95% and 70%, respectively) were observed for CA-PEI micelles. Stability studies demonstrated that siRNA and BSA integrity was maintained after loading and release. The CA-PEI micelles were non cytotoxic to V79 and DLD-1 cells, as shown by alamarBlue and LIVE/DEAD cell viability assays. RT-PCR study revealed that siRNA-loaded CA-PEI micelles suppressed the mRNA for ABCB1 gene. These results revealed the promising potential of CA-PEI micelles as a stable, safe, and versatile nano-carrier for siRNA and the model protein delivery.
    Matched MeSH terms: Cricetinae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links